Gene-Specific Sex Effects on Susceptibility to Infectious Diseases
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem, přehledy
PubMed
34721380
PubMed Central
PMC8553003
DOI
10.3389/fimmu.2021.712688
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, mouse model, parasites, sex influence, sex-bias, sex-dependent gene, susceptibility to infection, viruses,
- MeSH
- bakteriální infekce epidemiologie genetika MeSH
- biologické modely MeSH
- dítě MeSH
- dospělí MeSH
- druhová specificita MeSH
- genetická predispozice k nemoci * MeSH
- helmintóza epidemiologie genetika MeSH
- infekční nemoci epidemiologie genetika MeSH
- interakce hostitele a patogenu genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mykózy epidemiologie genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- parazitární nemoci epidemiologie genetika MeSH
- pohlavní dimorfismus * MeSH
- pohlavní steroidní hormony fyziologie MeSH
- rozložení podle pohlaví MeSH
- virové nemoci epidemiologie genetika MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
- Názvy látek
- pohlavní steroidní hormony MeSH
Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host's sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host's hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.
Zobrazit více v PubMed
Klein SL, Flanagan KL. Sex Differences in Immune Responses. Nat Rev Immunol (2016) 16(10):626–38. doi: 10.1038/nri.2016.90 PubMed DOI
Troy JD, Hill HR, Ewell MG, Frey SE. Sex Difference in Immune Response to Vaccination: A Participant-Level Meta-Analysis of Randomized Trials of IMVAMUNE Smallpox Vaccine. Vaccine (2015) 33(41):5425–31. doi: 10.1016/j.vaccine.2015.08.032 PubMed DOI PMC
Trevisan A, Giuliani A, Scapellato ML, Anticoli S, Carsetti R, Zaffina S, et al. . Sex Disparity in Response to Hepatitis B Vaccine Related to the Age of Vaccination. Int J Environ Res Public Health (2020) 17(1):327. doi: 10.3390/ijerph17010327 PubMed DOI PMC
Fischinger S, Boudreau CM, Butler AL, Streeck H, Alter G. Sex Differences in Vaccine-Induced Humoral Immunity. Semin Immunopathol (2019) 41(2):239–49. doi: 10.1007/s00281-018-0726-5 PubMed DOI PMC
Fink AL, Klein SL. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly. Physiol (Bethesda) (2015) 30(6):408–16. doi: 10.1152/physiol.00035.2015 PubMed DOI PMC
Koeken VA, de Bree LCJ, Mourits VP, Moorlag SJ, Walk J, Cirovic B, et al. . BCG Vaccination in Humans Inhibits Systemic Inflammation in a Sex-Dependent Manner. J Clin Invest (2020) 130(10):5591–602. doi: 10.1172/JCI133935 PubMed DOI PMC
Soldin OP, Mattison DR. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin Pharmacokinet (2009) 48(3):143–57. doi: 10.2165/00003088-200948030-00001 PubMed DOI PMC
Aguirre-Gamboa R, Joosten I, Urbano PCM, van der Molen RG, van Rijssen E, van Cranenbroek B, et al. . Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep (2016) 17(9):2474–87. doi: 10.1016/j.celrep.2016.10.053 PubMed DOI PMC
Butterworth M, McClellan B, Allansmith M. Influence of Sex in Immunoglobulin Levels. Nature (1967) 214(5094):1224–5. doi: 10.1038/2141224a0 PubMed DOI
Bain BJ. The Bone Marrow Aspirate of Healthy Subjects. Br J Haematol (1996) 94(1):206–9. doi: 10.1046/j.1365-2141.1996.d01-1786.x PubMed DOI
Uppal SS, Verma S, Dhot PS. Normal Values of CD4 and CD8 Lymphocyte Subsets in Healthy Indian Adults and the Effects of Sex, Age, Ethnicity, and Smoking. Cytometry B Clin Cytom (2003) 52(1):32–6. doi: 10.1002/cyto.b.10011 PubMed DOI
Berghöfer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H. TLR7 Ligands Induce Higher IFN-Alpha Production in Females. J Immunol (2006) 177(4):2088–96. doi: 10.4049/jimmunol.177.4.2088 PubMed DOI
Blazkova J, Gupta S, Liu Y, Gaudilliere B, Ganio EA, Bolen CR, et al. . Multicenter Systems Analysis of Human Blood Reveals Immature Neutrophils in Males and During Pregnancy. J Immunol (2017) 198(6):2479–88. doi: 10.4049/jimmunol.1601855 PubMed DOI PMC
Gupta S, Nakabo S, Blanco LP, O’Neil LJ, Wigerblad G, Goel RR, et al. . Sex Differences in Neutrophil Biology Modulate Response to Type I Interferons and Immunometabolism. Proc Natl Acad Sci USA (2020) 117(28):16481–91. doi: 10.1073/pnas.2003603117 PubMed DOI PMC
Rambold AS, Pearce EL. Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends Immunol (2018) 39(1):6–18. doi: 10.1016/j.it.2017.08.006 PubMed DOI
Nonnenmacher Y, Hiller K. Biochemistry of Proinflammatory Macrophage Activation. Cell Mol Life Sci (2018) 75(12):2093–109. doi: 10.1007/s00018-018-2784-1 PubMed DOI PMC
Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW. Sex Differences in Resident Immune Cell Phenotype Underlie More Efficient Acute Inflammatory Responses in Female Mice. Blood (2011) 118(22):5918–27. doi: 10.1182/blood-2011-03-340281 PubMed DOI PMC
Spitzer JA. Gender Differences in Some Host Defense Mechanisms. Lupus (1999) 8(5):380–3. doi: 10.1177/096120339900800510 PubMed DOI
Ćuruvija I, Stanojević S, Arsenović-Ranin N, Blagojević V, Dimitrijević M, Vidić-Danković B, et al. . Sex Differences in Macrophage Functions in Middle-Aged Rats: Relevance of Estradiol Level and Macrophage Estrogen Receptor Expression. Inflammation (2017) 40(3):1087–101. doi: 10.1007/s10753-017-0551-3 PubMed DOI
Valdebenito JO, Halimubieke N, Lendvai ÁZ, Figuerola J, Eichhorn G, Székely T. Seasonal Variation in Sex-Specific Immunity in Wild Birds. Sci Rep (2021) 11(1):1349. doi: 10.1038/s41598-020-80030-9 PubMed DOI PMC
Mondal S, Rai U. Sexual Dimorphism in Phagocytic Activity of Wall Lizard’s Splenic Macrophages and Its Control by Sex Steroids. Gen Comp Endocrinol (1999) 116(2):291–8. doi: 10.1006/gcen.1999.7370 PubMed DOI
Arizza V, Vazzana M, Schillaci D, Russo D, Giaramita FT, Parrinello N. Gender Differences in the Immune System Activities of Sea Urchin Paracentrotus Lividus . Comp Biochem Physiol A Mol Integr Physiol (2013) 164(3):447–55. doi: 10.1016/j.cbpa.2012.11.021 PubMed DOI
Belmonte RL, Corbally MK, Duneau DF, Regan JC. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila Melanogaster . Front Immunol (2020) 10:3075. doi: 10.3389/fimmu.2019.03075 PubMed DOI PMC
Chen CM, Chen SC, Yang HY, Yang ST, Wang CM. Hospitalization and Mortality Due to Hepatitis A in Taiwan: A 15-Year Nationwide Cohort Study. J Viral Hepat (2016) 23(11):940–5. doi: 10.1111/jvh.12564 PubMed DOI
Ruggieri A, Barbati C, Malorni W. Cellular and Molecular Mechanisms Involved in Hepatocellular Carcinoma Gender Disparity. Int J Cancer (2010) 127(3):499–504. doi: 10.1002/ijc.25298 PubMed DOI
Li Y, Xu A, Jia S, Huang J. Recent Advances in the Molecular Mechanism of Sex Disparity in Hepatocellular Carcinoma. Oncol Lett (2019) 17(5):4222–8. doi: 10.3892/ol.2019.10127 PubMed DOI PMC
Chen PJ, Yeh SH, Liu WH, Lin CC, Huang HC, Chen CL, et al. . Androgen Pathway Stimulates microRNA-216a Transcription to Suppress the Tumor Suppressor in Lung Cancer-1 Gene in Early Hepatocarcinogenesis. Hepatology (2012) 56(2):632–43. doi: 10.1002/hep.25695 PubMed DOI
WHO Ebola Response Team. Agua-Agum J, Ariyarajah A, Blake IM, Cori A, Donnelly CA, et al. . Ebola Virus Disease Among Male and Female Persons in West Africa. N Engl J Med (2016) 374(1):96–8. doi: 10.1056/NEJMc1510305 PubMed DOI PMC
Haitao T, Vermunt JV, Abeykoon J, Ghamrawi R, Gunaratne M, Jayachandran M, et al. . COVID-19 and Sex Differences: Mechanisms and >Biomarkers. Mayo Clin Proc (2020) 95(10):2189–203. doi: 10.1016/j.mayocp.2020.07.024 PubMed DOI PMC
Alwani M, Yassin A, Al-Zoubi RM, Aboumarzouk OM, Nettleship J, Kelly D, et al. . Sex-Based Differences in Severity and Mortality in COVID-19. Rev Med Virol (2021) 1:1–11. doi: 10.1002/rmv.2223 PubMed DOI PMC
Jin S, An H, Zhou T, Li T, Xie M, Chen S, et al. . Sex- and Age-Specific Clinical and Immunological Features of Coronavirus Disease 2019. PloS Pathog (2021) 17(3):e1009420. doi: 10.1371/journal.ppat.1009420 PubMed DOI PMC
Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females be Protective Against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int J Mol Sci (2020) 21(10):3474. doi: 10.3390/ijms21103474 PubMed DOI PMC
Devaux CA, Rolain JM, Raoult D. ACE2 Receptor Polymorphism: Susceptibility to SARS-CoV-2, Hypertension, Multi-Organ Failure, and COVID-19 Disease Outcome. J Microbiol Immunol Infect (2020) 53(3):425–35. doi: 10.1016/j.jmii.2020.04.015 PubMed DOI PMC
McQuillan G, Kruszon-Moran D, Flagg EW, Paulose-Ram R. Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Persons Aged 14-49: United States, 2015-2016. NCHS Data Brief (2018) 304):1–8. PubMed
Yousuf W, Ibrahim H, Harfouche M, Abu Hijleh F, Abu-Raddad L. Herpes Simplex Virus Type 1 in Europe: Systematic Review, Meta-Analyses and Meta-Regressions. BMJ Glob Health (2020) 5(7):e002388. doi: 10.1136/bmjgh-2020-002388 PubMed DOI PMC
Garenne M. Sex Differences in Measles Mortality: A World Review. Int J Epidemiol (1994) 23(3):632–42. doi: 10.1093/ije/23.3.632 PubMed DOI
Nicolosi A, Corrêa Leite ML, Musicco M, Arici C, Gavazzeni G, Lazzarin A. The Efficiency of Male-to-Female and Female-to-Male Sexual Transmission of the Human Immunodeficiency Virus: A Study of 730 Stable Couples. Italian Study Group on HIV Heterosexual Transmission. Epidemiology (1994) 5(6):570–5. doi: 10.1097/00001648-199411000-00003 PubMed DOI
Griesbeck M, Scully E, Altfeld M. Sex and Gender Differences in HIV-1 Infection. Clin Sci (Lond) (2016) 130(16):1435–51. doi: 10.1042/CS20160112 PubMed DOI
Hegdahl HK, Fylkesnes KM, Sandøy IF. Sex Differences in HIV Prevalence Persist Over Time: Evidence From 18 Countries in Sub-Saharan Africa. PloS One (2016) 11(2):e0148502. doi: 10.1371/journal.pone.0148502 PubMed DOI PMC
European Centre for Disease Prevention and Control/WHO, Regional Office for Europe . HIV/AIDS Surveillance in Europe 2019 – 2018 Data (2019). Stockholm: ECDC. Available at: https://www.ecdc.europa.eu/en/publications-data/hivaids-surveillance-europe-2019-2018-data (Accessed July 29, 2021).
Murray LJ, McCrum EE, Evans AE, Bamford KB. Epidemiology of Helicobacter Pylori Infection Among 4742 Randomly Selected Subjects From Northern Ireland. Int J Epidemiol (1997) 26(4):880–7. doi: 10.1093/ije/26.4.880 PubMed DOI
Cui J, Yan W, Xie H, Xu S, Wang Q, Zhang W, et al. . A Retrospective Seroepidemiologic Survey of Chlamydia Pneumoniae Infection in Patients in Beijing Between 2008 and 2017. PloS One (2018) 13(11):e0206995. doi: 10.1371/journal.pone.0206995 PubMed DOI PMC
Public Health England Laboratory Surveillance of Klebsiella Ssp. Bacteraemia in England, Wales and Northern Ireland: 2018. Health Prot Rep (2020) 14:1–18.
Schwartz AM, Shankar MB, Kugeler KJ, Max RJ, Hinckley AF, Meltzer MI, et al. . Epidemiology and Cost of Lyme Disease-Related Hospitalizations Among Patients With Employer-Sponsored Health Insurance-United States, 2005-2014. Zoonoses Public Health (2020) 67(4):407–15. doi: 10.1111/zph.12699 PubMed DOI PMC
Jarefors S, Bennet L, You E, Forsberg P, Ekerfelt C, Berglund J, et al. . Lyme Borreliosis Reinfection: Might It Be Explained by a Gender Difference in Immune Response? Immunology (2006) 118(2):224–32. doi: 10.1111/j.1365-2567.2006.02360.x PubMed DOI PMC
Hertz D, Schneider B. Sex Differences in Tuberculosis. Semin Immunopathol (2019) 41(2):225–37. doi: 10.1007/s00281-018-0725-6 PubMed DOI
Preston SH. Mortality Patterns in National Populations. 1st Edition. Winsborough HH, editor. New York: Academic Press; (1976).
Pohl AM, Pouillot R, Bazaco MC, Wolpert BJ, Healy JM, Bruce BB, et al. . Differences Among Incidence Rates of Invasive Listeriosis in the U.S. FoodNet Population by Age, Sex, Race/Ethnicity, and Pregnancy Status, 2008-2016. Foodborne Pathog Dis (2019) 16(4):290–7. doi: 10.1089/fpd.2018.2548 PubMed DOI PMC
Bremer V, Marcus U, Hamouda O. Syphilis on the Rise Again in Germany–results From Surveillance Data for 2011. Euro Surveill (2012) 17(29):20222. PubMed
Peeling RW, Mabey D, Kamb ML, Chen XS, Radolf JD, Benzaken AS. Syphilis. Nat Rev Dis Primers (2017) 3:17073. doi: 10.1038/nrdp.2017.73 PubMed DOI PMC
Cloots K, Burza S, Malaviya P, Hasker E, Kansal S, Mollett G, et al. . Male Predominance in Reported Visceral Leishmaniasis Cases: Nature or Nurture? A Comparison of Population-Based With Health Facility-Reported Data. PloS Negl Trop Dis (2020) 14(1):e0007995. doi: 10.1371/journal.pntd.0007995 PubMed DOI PMC
Rijal S, Uranw S, Chappuis F, Picado A, Khanal B, Paudel IS, et al. . Epidemiology of Leishmania Donovani Infection in High-Transmission Foci in Nepal. Trop Med Int Heal (2010) 15:21–8. doi: 10.1111/j.1365-3156.2010.02518.x PubMed DOI
Jervis S, Chapman LAC, Dwivedi S, Karthick M, Das A, Le Rutte EA, et al. . Variations in Visceral Leishmaniasis Burden, Mortality and the Pathway to Care Within Bihar, India. Parasit Vectors (2017) 10(1):601. doi: 10.1186/s13071-017-2530-9 PubMed DOI PMC
Wondimeneh Y, Takele Y, Atnafu A, Ferede G, Muluye D. Trend Analysis of Visceral Leishmaniasis at Addis Zemen Health Center, Northwest Ethiopia. BioMed Res Int (2014) 2014:545393. doi: 10.1155/2014/545393 PubMed DOI PMC
Harizanov R, Rainova I, Tzvetkova N, Kaftandjiev I, Bikov I, Mikov O. Geographical Distribution and Epidemiological Characteristics of Visceral Leishmaniasis in Bulgaria, 1988 to 2012. Eurosurveillance (2013) 18:20531. doi: 10.2807/1560-7917.ES2013.18.29.20531 PubMed DOI
Lachaud L, Dedet JP, Marty P, Faraut F, Buffet P, Gangneux JP, et al. . Surveillance of Leishmaniases in France, 1999 to 2012. Eurosurveillance (2013) 18:20534. doi: 10.2807/1560-7917.ES2013.18.29.20534 PubMed DOI
Herrador Z, Gherasim A, Jimenez BC, Granados M, San Martín JV, Aparicio P. Epidemiological Changes in Leishmaniasis in Spain According to Hospitalization-Based Records, 1997–2011: Raising Awareness Towards Leishmaniasis in Non-HIV Patients. PloS Negl Trop Dis (2015) 9:e0003594. doi: 10.1371/journal.pntd.0003594 PubMed DOI PMC
Rodriguez NE, Lima ID, Dixit UG, Turcotte EA, Lockard RD, Batra-Sharma H, et al. . Epidemiological and Experimental Evidence for Sex-Dependent Differences in the Outcome of Leishmania Infantum Infection. Am J Trop Med Hyg (2018) 98:142–5. doi: 10.4269/ajtmh.17-0563 PubMed DOI PMC
Gandacu D, Glazer Y, Anis E, Karakis I, Warshavsky B, Slater P, et al. . Resurgence of Cutaneous Leishmaniasis in Israel, 2001-2012. Emerg Infect Dis (2014) 20:1605–11. doi: 10.3201/eid2010.140182 PubMed DOI PMC
Spotin A, Rouhani S, Parvizi P. The Associations of Leishmania Major and Leishmania Tropica Aspects by Focusing Their Morphological and Molecular Features on Clinical Appearances in Khuzestan Province, Iran. BioMed Res Int (2014) 2014:913510. doi: 10.1155/2014/913510 PubMed DOI PMC
Collis S, El-Safi S, Bhattacharyya T, Hammad A, Den Boer M, Lee H, et al. . Epidemiological and Molecular and Molecular Investigation of Resurgent Cutaneous Leishmaniasis in Sudan. Int J Infect Dis (2019) 88:14–20. doi: 10.1016/j.ijid.2019.08.018 PubMed DOI PMC
Soares L, Abad-Franch F, Ferraz G. Epidemiology of Cutaneous Leishmaniasis in Central Amazonia: A Comparison of Sex-Biased Incidence Among Rural Settlers and Field Biologists. Trop Med Int Heal (2014) 19:988–95. doi: 10.1111/tmi.12337 PubMed DOI
Reithinger R, Mohsen M, Aadil K, Sidiqi M, Erasmus P, Coleman PG. Anthroponotic Cutaneous Leishmaniasis, Kabul, Afghanistan. Emerg Infect Dis (2003) 9:727–9. doi: 10.3201/eid0906.030026 PubMed DOI PMC
Layegh P, Moghiman T, Ahmadian Hoseini SA. Children and Cutaneous Leishmaniasis: A Clinical Report and Review. J Infect Dev Ctries (2013) 7:614–7. doi: 10.3855/jidc.2939 PubMed DOI
Bettaieb J, Toumi A, Chlif S, Chelghaf B, Boukthir A, Gharbi A, et al. . Prevalence and Determinants of Leishmania Major Infection in Emerging and Old Foci in Tunisia. Parasit Vectors (2014) 7:386. doi: 10.1186/1756-3305-7-386 PubMed DOI PMC
Bakuza JS, Denwood MJ, Nkwengulila G, Mable BK. Estimating the Prevalence and Intensity of Schistosoma Mansoni Infection Among Rural Communities in Western Tanzania: The Influence of Sampling Strategy and Statistical Approach. PloS Negl Trop Dis (2017) 11(9):e0005937. doi: 10.1371/journal.pntd.0005937 PubMed DOI PMC
Hazza YA, Arfaa F, Haggar M. Studies on Schistosomiasis in Taiz Province, Yemen Arab Republic. Am J Trop Med Hyg (1983) 32(5):1023–8. doi: 10.4269/ajtmh.1983.32.1023 PubMed DOI
Hajjeh RA, Brandt ME, Pinner RW. Emergence of Cryptococcal Disease: Epidemiologic Perspectives 100 Years After Its Discovery. Epidemiol Rev (1995) 17(2):303–20. doi: 10.1093/oxfordjournals.epirev.a036195 PubMed DOI
Shaheen AA, Somayaji R, Myers R, Mody CH. Epidemiology and Trends of Cryptococcosis in the United States From 2000 to 2007: A Population-Based Study. Int J STD AIDS (2018) 29(5):453–60. doi: 10.1177/0956462417732649 PubMed DOI
Wright JE, Werkman M, Dunn JC, Anderson RM. Current Epidemiological Evidence for Predisposition to High or Low Intensity Human Helminth Infection: A Systematic Review. Parasit Vectors (2018) 11(1):65. doi: 10.1186/s13071-018-2656-4 PubMed DOI PMC
Kelvin EA, Carpio A, Bagiella E, Leslie D, Leon P, Andrews H, et al. . Ecuadorian Neurocysticercosis Group. The Association of Host Age and Gender With Inflammation Around Neurocysticercosis Cysts. Ann Trop Med Parasitol (2009) 103(6):487–99. doi: 10.1179/000349809X12459740922291 PubMed DOI
Krayem I, Lipoldová M. Role of Host Genetics and Cytokines in Leishmania Infection. Cytokine (2021) 147:155244. doi: 10.1016/j.cyto.2020.155244 PubMed DOI
Lipoldová M, Demant P. Genetic Susceptibility to Infectious Disease: Lessons From Mouse Models of Leishmaniasis. Nat Rev Genet (2006) 7:294–305. doi: 10.1038/nrg1832 PubMed DOI
Chapman SJ, Hill AV. Human Genetic Susceptibility to Infectious Disease. Nat Rev Genet (2012) 13(3):175–88. doi: 10.1038/nrg3114 PubMed DOI
Kerner G, Patin E, Quintana-Murci L. New Insights Into Human Immunity From Ancient Genomics. Curr Opin Immunol (2021) 72:116–25. doi: 10.1016/j.coi.2021.04.006 PubMed DOI PMC
Sorensen C, Murray V, Lemery J, Balbus J. Climate Change and Women’s Health: Impacts and Policy Directions. PloS Med (2018) 15(7):e1002603. doi: 10.1371/journal.pmed.1002603 PubMed DOI PMC
Tchuem Tchuenté LA, Behnke JM, Gilbert FS, Southgate VR, Vercruysse J. Polyparasitism With Schistosoma Haematobium and Soil-Transmitted Helminth Infections Among School Children in Loum, Cameroon. Trop Med Int Health (2003) 8(11):975–86. doi: 10.1046/j.1360-2276.2003.01120.x PubMed DOI
Lorenzo ME, Hodgson A, Robinson DP, Kaplan JB, Pekosz A, Klein SL. Antibody Responses and Cross Protection Against Lethal Influenza A Viruses Differ Between the Sexes in C57BL/6 Mice. Vaccine (2011) 29(49):9246–55. doi: 10.1016/j.vaccine.2011.09.110 PubMed DOI PMC
Kosyreva AM, Makarova OV, Kakturskiy LV, Mikhailova LP, Boltovskaya MN, Rogov KA. Sex Differences of Inflammation in Target Organs, Induced by Intraperitoneal Injection of Lipopolysaccharide, Depend on Its Dose. J Inflamm Res (2018) 11:431–45. doi: 10.2147/JIR.S178288 PubMed DOI PMC
Alexander J. Sex Differences and Cross-Immunity in DBA/2 Mice Infected With L. Mexicana and L. Major . Parasitology (1988) 96(Pt 2):297–302. doi: 10.1017/s0031182000058303 PubMed DOI
Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, et al. . Genetics of Host Response to Leishmania Tropica in Mice - Different Control of Skin Pathology, Chemokine Reaction, and Invasion Into Spleen and Liver. PloS Negl Trop Dis (2012) 6:e1667. doi: 10.1371/journal.pntd.0001667 PubMed DOI PMC
Kurey I, Kobets T, Havelková H, Slapnicková M, Quan L, Trtková K, et al. . Distinct Genetic Control of Parasite Elimination, Dissemination, and Disease After Leishmania Major Infection. Immunogenetics (2009) 61(9):619–33. doi: 10.1007/s00251-009-0392-9 PubMed DOI PMC
Stenger S, Donhauser N, Thüring H, Röllinghoff M, Bogdan C. Reactivation of Latent Leishmaniasis by Inhibition of Inducible Nitric Oxide Synthase. J Exp Med (1996) 183(4):1501–14. doi: 10.1084/jem.183.4.1501 PubMed DOI PMC
Blos M, Schleicher U, Soares Rocha FJ, Meissner U, Röllinghoff M, Bogdan C. Organ-Specific and Stage-Dependent Control of Leishmania Major Infection by Inducible Nitric Oxide Synthase and Phagocyte NADPH Oxidase. Eur J Immunol (2003) 33(5):1224–34. doi: 10.1002/eji.200323825 PubMed DOI
Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, et al. . Tissue-Specific Expression and Regulation of Sexually Dimorphic Genes in Mice. Genome Res (2006) 16(8):995–1004. doi: 10.1101/gr.5217506 PubMed DOI PMC
Howard ZP, Omsland A. Selective Inhibition of Coxiella Burnetii Replication by the Steroid Hormone Progesterone. Infect Immun (2020) 88(12):e00894–19. doi: 10.1128/IAI.00894-19 PubMed DOI PMC
Fitzgerald TJ, Yotis WW. Mechanism of Action of the Gonadal Steroids Producing Diminution of Growth of Staphylococcus Aureus . J Appl Bacteriol (1973) 36(4):707–21. doi: 10.1111/j.1365-2672.1973.tb04156.x PubMed DOI
Wierman ME. Sex Steroid Effects at Target Tissues: Mechanisms of Action. Adv Physiol Educ (2007) 31(1):26–33. doi: 10.1152/advan.00086.2006 PubMed DOI
Hammes SR, Levin ER. Extranuclear Steroid Receptors: Nature and Actions. Endocr Rev (2007) 28(7):726–41. doi: 10.1210/er.2007-0022 PubMed DOI
Brown MA, Su MA. An Inconvenient Variable: Sex Hormones and Their Impact on T Cell Responses. J Immunol (2019) 202(7):1927–33. doi: 10.4049/jimmunol.1801403 PubMed DOI PMC
Shepherd R, Cheung AS, Pang K, Saffery R, Novakovic B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front Immunol (2021) 11:604000. doi: 10.3389/fimmu.2020.604000 PubMed DOI PMC
Kovats S. Estrogen Receptors Regulate Innate Immune Cells and Signaling Pathways. Cell Immunol (2015) 294(2):63–9. doi: 10.1016/j.cellimm.2015.01.018 PubMed DOI PMC
Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17beta-Estradiol Protects Females From Influenza A Virus Pathogenesis by Suppressing Inflammatory Responses. PloS Pathog (2011) 7(7):e1002149. doi: 10.1371/journal.ppat.1002149 PubMed DOI PMC
White V, Jawerbaum A, Mazzucco MB, Gauster M, Desoye G, Hiden U. IGF2 Stimulates Fetal Growth in a Sex- and Organ-Dependent Manner. Pediatr Res (2018) 83(1-1):183–9. doi: 10.1038/pr.2017.221 PubMed DOI
Yoon K, Kim N. Roles of Sex Hormones and Gender in the Gut Microbiota. J Neurogastroenterol Motil (2021) 27(3):314–25. doi: 10.5056/jnm20208 PubMed DOI PMC
Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X Chromosome and Sex-Specific Effects in Infectious Disease Susceptibility. Hum Genomics (2019) 13(1):2. doi: 10.1186/s40246-018-0185-z PubMed DOI PMC
Case LK, Teuscher C. Y Genetic Variation and Phenotypic Diversity in Health and Disease. Biol Sex Differ (2015) 6:6. doi: 10.1186/s13293-015-0024-z PubMed DOI PMC
Balaton BP, Brown CJ. Escape Artists of the X Chromosome. Trends Genet (2016) 32(6):348–59. doi: 10.1016/j.tig.2016.03.007 PubMed DOI
Karnam G, Rygiel TP, Raaben M, Grinwis GC, Coenjaerts FE, Ressing ME, et al. . CD200 Receptor Controls Sex-Specific TLR7 Responses to Viral Infection. PloS Pathog (2012) 8(5):e1002710. doi: 10.1371/journal.ppat.1002710 PubMed DOI PMC
Case LK, Toussaint L, Moussawi M, Roberts B, Saligrama N, Brossay L, et al. . Chromosome Y Regulates Survival Following Murine Coxsackievirus B3 Infection. G3 (Bethesda) (2012) 2(1):115–21. doi: 10.1534/g3.111.001610 PubMed DOI PMC
Krementsov DN, Case LK, Dienz O, Raza A, Fang Q, Ather JL, et al. . Genetic Variation in Chromosome Y Regulates Susceptibility to Influenza A Virus Infection. Proc Natl Acad Sci USA (2017) 114(13):3491–6. doi: 10.1073/pnas.1620889114 PubMed DOI PMC
Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L, Ma RZ, et al. . Sex-Specific Quantitative Trait Loci Govern Susceptibility to Theiler’s Murine Encephalomyelitis Virus-Induced Demyelination. Genetics (2003) 163:1041–6. doi: 10.1093/genetics/163.3.1041 PubMed DOI PMC
Brownstein DG, Gras L. Chromosome Mapping of Rmp-4, A Gonad-Dependent Gene Encoding Host Resistance to Mousepox. J Virol (1995) 69(11):6958–64. doi: 10.1128/JVI.69.11.6958-6964.1995 PubMed DOI PMC
Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, et al. . Mapping of Clinical and Expression Quantitative Trait Loci in a Sex-Dependent Effect of Host Susceptibility to Mouse-Adapted Influenza H3N2/HK/1/68. J Immunol (2012) 188:3949–60. doi: 10.4049/jimmunol.1103320 PubMed DOI
Lundberg P, Welander P, Openshaw H, Nalbandian C, Edwards C, Moldawer L, et al. . A Locus on Mouse Chromosome 6 That Determines Resistance to Herpes Simplex Virus Also Influences Reactivation, While an Unlinked Locus Augments Resistance of Female Mice. J Virol (2003) 77(21):11661–73. doi: 10.1128/jvi.77.21.11661-11673.2003 PubMed DOI PMC
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, et al. . Lrrk2 Alleles Modulate Inflammation During Microbial Infection of Mice in a Sex-Dependent Manner. Sci Transl Med (2019) 11(511):eaas9292. doi: 10.1126/scitranslmed.aas9292 PubMed DOI
Min-Oo G, Lindqvist L, Vaglenov A, Wang C, Fortin P, Li Y, et al. . Genetic Control of Susceptibility to Pulmonary Infection With Chlamydia Pneumoniae in the Mouse. Genes Immun (2008) 9:383–8. doi: 10.1038/sj.gene.6364450 PubMed DOI
Kobets T, Čepičková M, Volkova V, Sohrabi Y, Havelková H, Svobodová M, et al. . Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania Major, Their Interactions and Sex Influence. Front Immunol (2019) 10:1083. doi: 10.3389/fimmu.2019.01083 PubMed DOI PMC
Slapničková M, Volkova V, Čepičková M, Kobets T, Šíma M, Svobodová M, et al. . Gene-Specific Sex Effects on Eosinophil Infiltration in Leishmaniasis. Biol Sex Differ (2016) 7:59. doi: 10.1186/s13293-016-0117-3 PubMed DOI PMC
Bryson KJ, Millington OR, Mokgethi T, McGachy HA, Brombacher F, Alexander J. BALB/c Mice Deficient in CD4 T Cell IL-4rα Expression Control Leishmania Mexicana Load Although Female But Not Male Mice Develop a Healer Phenotype. PloS Negl Trop Dis (2011) 5(1):e930. doi: 10.1371/journal.pntd.0000930 PubMed DOI PMC
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, et al. . Genetic Control of Resistance to Trypanosoma Brucei Brucei Infection in Mice. PloS Negl Trop Dis (2011) 5:e1173. doi: 10.1371/journal.pntd.0001173 PubMed DOI PMC
Carroll SF, Loredo Osti JC, Guillot L, Morgan K, Qureshi ST. Sex Differences in the Genetic Architecture of Susceptibility to Cryptococcus Neoformans Pulmonary Infection. Genes Immun (2008) 9:536–45. doi: 10.1038/gene.2008.48 PubMed DOI
Hayes KS, Hager R, Grencis RK. Sex-Dependent Genetic Effects on Immune Responses to a Parasitic Nematode. BMC Genomics (2014) 15:193. doi: 10.1186/1471-2164-15-193 PubMed DOI PMC
Khramtsova EA, Davis LK, Stranger BE. The Role of Sex in the Genomics of Human Complex Traits. Nat Rev Genet (2019) 20(3):173–90. doi: 10.1038/s41576-018-0083-1 Erratum in: Nat Rev Genet. 2019. PubMed DOI
Dzamko NL. LRRK2 and the Immune System. Adv Neurobiol (2017) 14:123–43. doi: 10.1007/978-3-319-49969-7_ PubMed DOI
Schuurhof A, Bont L, Siezen CL, Hodemaekers H, van Houwelingen HC, Kimman TG, et al. . Interleukin-9 Polymorphism in Infants With Respiratory Syncytial Virus Infection: An Opposite Effect in Boys and Girls. Pediatr Pulmonol (2010) 45(6):608–13. doi: 10.1002/ppul.21229 PubMed DOI
Moretti S, Renga G, Oikonomou V, Galosi C, Pariano M, Iannitti RG, et al. . A Mast Cell-ILC2-Th9 Pathway Promotes Lung Inflammation in Cystic Fibrosis. Nat Commun (2017) 8:14017. doi: 10.1038/ncomms14017 PubMed DOI PMC
Pseudoautosomal Regions | HUGO Gene Nomenclature … Par2. Available at: https://www.genenames.org/data/genegroup/#!/group/716 (Accessed July 18, 2021).
Vermeesch JR, Petit P, Kermouni A, Renauld JC, Van Den Berghe H, Marynen P. The IL-9 Receptor Gene, Located in the Xq/Yq Pseudoautosomal Region, Has an Autosomal Origin, Escapes X Inactivation and Is Expressed From the Y. Hum Mol Genet (1997) 6(1):1–8. doi: 10.1093/hmg/6.1.1 PubMed DOI
Bhasin JM, Chakrabarti E, Peng DQ, Kulkarni A, Chen X, Smith JD. Sex Specific Gene Regulation and Expression QTLs in Mouse Macrophages From a Strain Intercross. PloS One (2008) 3:e1435. doi: 10.1371/journal.pone.0001435 PubMed DOI PMC
Ober C, Loisel DA, Gilad Y. Sex-Specific Genetic Architecture of Human Disease. Nat Rev Genet (2008) 9:911–22. doi: 10.1038/nrg2415 PubMed DOI PMC