Improving reproducibility and translational potential of mouse models: lessons from studying leishmaniasis
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40330482
PubMed Central
PMC12052738
DOI
10.3389/fimmu.2025.1559907
Knihovny.cz E-zdroje
- Klíčová slova
- experimental analysis, experimental conditions, human leishmaniasis, influencing factor, mouse model, reproducibility of data, translation,
- MeSH
- Leishmania * imunologie MeSH
- leishmanióza * parazitologie imunologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- translační biomedicínský výzkum * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
Department of Medical Genetics 3rd Faculty of Medicine Charles University Prague Czechia
Department of Parasitology Pasteur Institute of Iran Tehran Iran
Institute of Molecular Genetics Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Mann S, Frasca K, Scherrer S, Henao-Martinez AF, Newman S, Ramanan P, et al. . A review of leishmaniasis: current knowledge and future directions. Curr Trop Med Rep. (2021) 8:121–32. doi: 10.1007/s40475-021-00232-7 PubMed DOI PMC
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. (2018) 392:951–70. doi: 10.1016/S0140-6736(18)31204-2 PubMed DOI
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. (2013) 27:123–47. doi: 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Rostami MN, Khamesipour A. Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol. (2021) 210:81–100. doi: 10.1007/s00430-021-00703-8 PubMed DOI PMC
Bogdan C. Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cell Microbiol. (2008) 10:1221–34. doi: 10.1111/j.1462-5822.2008.01146.x PubMed DOI
Terrazas CA, Terrazas LI, Gomez-Garcia L. Modulation of dendritic cell responses by parasites: a common strategy to survive. J BioMed Biotechnol. (2010) 2010:357106. doi: 10.1155/2010/357106 PubMed DOI PMC
Loria-Cervera EN, Andrade-Narvaez FJ. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo. (2014) 56:1–11. doi: 10.1590/S0036-46652014000100001 PubMed DOI PMC
Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. (2002) 2:845–58. doi: 10.1038/nri933 PubMed DOI
Krayem I, Lipoldova M. Role of host genetics and cytokines in Leishmania infection. Cytokine. (2021) 147:155244. doi: 10.1016/j.cyto.2020.155244 PubMed DOI
Kobets T, Grekov I, Lipoldova M. Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem. (2012) 19:1443–74. doi: 10.2174/092986712799828300 PubMed DOI
Boussoffara T, Labidi I, Trimeche M, Chelbi I, Dachraoui K, Msallem N, et al. . LmCen(-/-) based vaccine is protective against canine visceral leishmaniasis following three natural exposures in Tunisia. NPJ Vaccines. (2025) 10:31. doi: 10.1038/s41541-025-01070-8 PubMed DOI PMC
Singh OP, Hasker E, Sacks D, Boelaert M, Sundar S. Asymptomatic Leishmania infection: a new challenge for Leishmania control. Clin Infect Dis. (2014) 58:1424–9. doi: 10.1093/cid/ciu102 PubMed DOI PMC
Pederiva MMC, Santos SMD, Rivarola LGS, Guerreiro VJ, Lopes KS, Lima Junior M, et al. . Asymptomatic Leishmania infection in humans: A systematic review. J Infect Public Health. (2023) 16:286–94. doi: 10.1016/j.jiph.2022.12.021 PubMed DOI
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol. (2024) 15:1304696. doi: 10.3389/fimmu.2024.1304696 PubMed DOI PMC
Nateghi Rostami M, Keshavarz H, Khamesipour A. Immune response of BALB/c mice against an experimental vaccine of Alum precipitated autoclaved Leishmania major (Alum-ALM) mixed with BCG or Mycobacterium vaccae. Trop Biomed. (2010) 27:89–102. PubMed
Miramin-Mohammadi A, Javadi A, Eskandari SE, Mortazavi H, Rostami MN, Khamesipour A. Immune response in cutaneous leishmaniasis patients with healing vs. non-healing lesions. Iran J Microbiol. (2020) 12:249–55. doi: 10.18502/ijm.v12i3.3243 PubMed DOI PMC
Lera-Nonose D, De Oliveira LF, Brustolin A, Santos TS, Oyama J, Ramos-Milare A, et al. . Genetic variations in the human immune system influence susceptibility to tegumentary leishmaniasis: a systematic review and meta-analysis. Expert Rev Clin Immunol. (2021) 17:513–37. doi: 10.1080/1744666X.2021.1906650 PubMed DOI
Bharati K. Human genetic polymorphism and Leishmaniasis. Infection Genet evolution: J Mol Epidemiol evolutionary Genet Infect diseases. (2022) 98:105203. doi: 10.1016/j.meegid.2021.105203 PubMed DOI
Masopust D, Sivula CP, Jameson SC. Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol. (2017) 199:383–8. doi: 10.4049/jimmunol.1700453 PubMed DOI PMC
Mikhail JW, Mansour NS. Leishmania donovani: therapeutic and prophylaciic action of antimony dextran glycoside (RL-712) in the golden hamster. Exp Parasitol. (1975) 37:348–52. doi: 10.1016/0014-4894(75)90002-8 PubMed DOI
Keenan CM, Hendricks LD, Lightner L, Webster HK, Johnson AJ. Visceral leishmaniasis in the German shepherd dog. I. Infection, clinical disease, and clinical pathology. Vet Pathol. (1984) 21:74–9. doi: 10.1177/030098588402100113 PubMed DOI
Chapman WL, Jr., Hanson WL, Hendricks LD. Toxicity and efficacy of the antileishmanial drug meglumine antimoniate in the owl monkey (Aotus trivirgatus). J Parasitol. (1983) 69:1176–7. doi: 10.2307/3280894 PubMed DOI
Hommel M, Jaffe CL, Travi B, Milon G. Experimental models for leishmaniasis and for testing anti-leishmanial vaccines. Ann Trop Med Parasitol. (1995) 89 Suppl 1:55–73. doi: 10.1080/00034983.1995.11813015 PubMed DOI
Courret N, Lang T, Milon G, Antoine JC. Intradermal inoculations of low doses of Leishmania major and Leishmania amazonensis metacyclic promastigotes induce different immunoparasitic processes and status of protection in BALB/c mice. Int J Parasitol. (2003) 33:1373–83. doi: 10.1016/S0020-7519(03)00179-6 PubMed DOI
Behforouz NC, Wenger CD, Mathison BA. Prophylactic treatment of BALB/c mice with cyclosporine A and its analog B-5-49 enhances resistance to Leishmania major. J Immunol. (1986) 136:3067–75. doi: 10.4049/jimmunol.136.8.3067 PubMed DOI
Van den Kerkhof M, Mabille D, Chatelain E, Mowbray CE, Braillard S, Hendrickx S, et al. . In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. Int J Parasitol Drugs Drug Resist. (2018) 8:81–6. doi: 10.1016/j.ijpddr.2018.01.006 PubMed DOI PMC
van der Ende J, Schallig H. Leishmania animal models used in drug discovery: A systematic review. Anim (Basel). (2023) 13(10):1650. doi: 10.3390/ani13101650 PubMed DOI PMC
Tegazzini D, Diaz R, Aguilar F, Pena I, Presa JL, Yardley V, et al. . A Replicative In Vitro Assay for Drug Discovery against Leishmania donovani. Antimicrob Agents Chemother. (2016) 60:3524–32. doi: 10.1128/AAC.01781-15 PubMed DOI PMC
Fortin A, Caridha DP, Leed S, Ngundam F, Sena J, Bosschaerts T, et al. . Direct comparison of the efficacy and safety of oral treatments with oleylphosphocholine (OlPC) and miltefosine in a mouse model of L. major cutaneous leishmaniasis. PloS Negl Trop Dis. (2014) 8:e3144. doi: 10.1371/journal.pntd.0003144 PubMed DOI PMC
Garcia Bustos MF, Barrio A, Prieto GG, de Raspi EM, Cimino RO, Cardozo RM, et al. . In vivo antileishmanial efficacy of miltefosine against Leishmania (Leishmania) amazonensis. J Parasitol. (2014) 100:840–7. doi: 10.1645/13-376.1 PubMed DOI
Jaafari MR, Bavarsad N, Bazzaz BS, Samiei A, Soroush D, Ghorbani S, et al. . Effect of topical liposomes containing paromomycin sulfate in the course of Leishmania major infection in susceptible BALB/c mice. Antimicrob Agents Chemother. (2009) 53:2259–65. doi: 10.1128/AAC.01319-08 PubMed DOI PMC
Neira LF, Mantilla JC, Escobar P. Anti-leishmanial activity of a topical miltefosine gel in experimental models of New World cutaneous leishmaniasis. J Antimicrob Chemother. (2019) 74:1634–41. doi: 10.1093/jac/dkz049 PubMed DOI
Herrera L, Llanes A, Alvarez J, Degracia K, Restrepo CM, Rivera R, et al. . Antileishmanial activity of a new chloroquine analog in an animal model of Leishmania panamensis infection. Int J Parasitol Drugs Drug Resist. (2020) 14:56–61. doi: 10.1016/j.ijpddr.2020.08.002 PubMed DOI PMC
Mears ER, Modabber F, Don R, Johnson GE. A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PloS Negl Trop Dis. (2015) 9:e0003889. doi: 10.1371/journal.pntd.0003889 PubMed DOI PMC
Sakthianandeswaren A, Foote SJ, Handman E. The role of host genetics in leishmaniasis. Trends Parasitol. (2009) 25:383–91. doi: 10.1016/j.pt.2009.05.004 PubMed DOI
Vladimirov V, Badalova J, Svobodova M, Havelkova H, Hart AA, Blazkova H, et al. . Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun. (2003) 71:2041–6. doi: 10.1128/IAI.71.4.2041-2046.2003 PubMed DOI PMC
Kurey I, Kobets T, Havelkova H, Slapnickova M, Quan L, Trtkova K, et al. . Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics. (2009) 61:619–33. doi: 10.1007/s00251-009-0392-9 PubMed DOI PMC
Krayem I, Sohrabi Y, Havelkova H, Gusareva ES, Strnad H, Cepickova M, et al. . Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNgamma level in addition to skin lesions. Front Immunol. (2023) 14:1145269. doi: 10.3389/fimmu.2023.1145269 PubMed DOI PMC
Krayem I, Sohrabi Y, Javorkova E, Volkova V, Strnad H, Havelkova H, et al. . Genetic influence on frequencies of myeloid-derived cell subpopulations in mouse. Front Immunol. (2021) 12:760881. doi: 10.3389/fimmu.2021.760881 PubMed DOI PMC
Sohrabi Y, Volkova V, Kobets T, Havelkova H, Krayem I, Slapnickova M, et al. . Genetic regulation of guanylate-binding proteins 2b and 5 during leishmaniasis in mice. Front Immunol. (2018) 9:130. doi: 10.3389/fimmu.2018.00130 PubMed DOI PMC
Lipoldova M, Demant P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet. (2006) 7:294–305. doi: 10.1038/nrg1832 PubMed DOI
Kobets T, Havelkova H, Grekov I, Volkova V, Vojtiskova J, Slapnickova M, et al. . Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PloS Negl Trop Dis. (2012) 6:e1667. doi: 10.1371/journal.pntd.0001667 PubMed DOI PMC
Havelkova H, Badalova J, Svobodova M, Vojtikova J, Kurey I, Vladimirov V, et al. . Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. (2006) 7:220–33. doi: 10.1038/sj.gene.6364290 PubMed DOI
Sohrabi Y, Havelkova H, Kobets T, Sima M, Volkova V, Grekov I, et al. . Mapping the genes for susceptibility and response to Leishmania tropica in mouse. PloS Negl Trop Dis. (2013) 7:e2282. doi: 10.1371/journal.pntd.0002282 PubMed DOI PMC
Lipoldova M, Svobodova M, Havelkova H, Krulova M, Badalova J, Nohynkova E, et al. . Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics. (2002) 54:174–83. doi: 10.1007/s00251-002-0439-7 PubMed DOI
Kobets T, Cepickova M, Volkova V, Sohrabi Y, Havelkova H, Svobodova M, et al. . Novel loci controlling parasite load in organs of mice infected with leishmania major, their interactions and sex influence. Front Immunol. (2019) 10:1083. doi: 10.3389/fimmu.2019.01083 PubMed DOI PMC
Badalova J, Svobodova M, Havelkova H, Vladimirov V, Vojtiskova J, Engova J, et al. . Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. (2002) 3:187–95. doi: 10.1038/sj.gene.6363838 PubMed DOI
Lipoldova M, Svobodova M, Krulova M, Havelkova H, Badalova J, Nohynkova E, et al. . Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. (2000) 1:200–6. doi: 10.1038/sj.gene.6363660 PubMed DOI
Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. (1993) 73:469–85. doi: 10.1016/0092-8674(93)90135-d PubMed DOI
Bucheton B, Abel L, Kheir MM, Mirgani A, El-Safi SH, Chevillard C, et al. . Genetic control of visceral leishmaniasis in a Sudanese population: candidate gene testing indicates a linkage to the NRAMP1 region. Genes Immun. (2003) 4:104–9. doi: 10.1038/sj.gene.6363927 PubMed DOI
Sakthianandeswaren A, Curtis JM, Elso C, Kumar B, Baldwin TM, Lopaticki S, et al. . Fine mapping of Leishmania major susceptibility Locus lmr2 and evidence of a role for Fli1 in disease and wound healing. Infect Immun. (2010) 78:2734–44. doi: 10.1128/IAI.00126-10 PubMed DOI PMC
Castellucci L, Jamieson SE, Miller EN, de Almeida LF, Oliveira J, Magalhaes A, et al. . FLI1 polymorphism affects susceptibility to cutaneous leishmaniasis in Brazil. Genes Immun. (2011) 12:589–94. doi: 10.1038/gene.2011.37 PubMed DOI PMC
Tao L, Reese TA. Making mouse models that reflect human immune responses. Trends Immunol. (2017) 38:181–93. doi: 10.1016/j.it.2016.12.007 PubMed DOI
Lee SH, Charmoy M, Romano A, Paun A, Chaves MM, Cope FO, et al. . Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J Exp Med. (2018) 215:357–75. doi: 10.1084/jem.20171389 PubMed DOI PMC
Sohrabi Y, Lipoldova M. Mannose receptor and the mystery of nonhealing leishmania major infection. Trends Parasitol. (2018) 34:354–6. doi: 10.1016/j.pt.2018.03.006 PubMed DOI
Menon JN, Bretscher PA. Parasite dose determines the Th1/Th2 nature of the response to Leishmania major independently of infection route and strain of host or parasite. Eur J Immunol. (1998) 28:4020–8. doi: 10.1002/(SICI)1521-4141(199812)28:12<4020::AID-IMMU4020>3.0.CO;2-3 PubMed DOI
Baldwin TM, Elso C, Curtis J, Buckingham L, Handman E. The site of Leishmania major infection determines disease severity and immune responses. Infect Immun. (2003) 71:6830–4. doi: 10.1128/IAI.71.12.6830-6834.2003 PubMed DOI PMC
Lockard RD, Wilson ME, Rodriguez NE. Sex-related differences in immune response and symptomatic manifestations to infection with leishmania species. J Immunol Res. (2019) 2019:4103819. doi: 10.1155/2019/4103819 PubMed DOI PMC
Lipoldova M, Demant P. Gene-specific sex effects on susceptibility to infectious diseases. Front Immunol. (2021) 12:712688. doi: 10.3389/fimmu.2021.712688 PubMed DOI PMC
Vom Steeg LG, Klein SL. Sex and sex steroids impact influenza pathogenesis across the life course. Semin Immunopathol. (2019) 41:189–94. doi: 10.1007/s00281-018-0718-5 PubMed DOI PMC
Loureiro Salgado C, Mendez Corea AF, Covre LP, De Matos Guedes HL, Falqueto A, Gomes DCO. Ageing impairs protective immunity and promotes susceptibility to murine visceral leishmaniasis. Parasitology. (2022) 149:1249–56. doi: 10.1017/S0031182022000828 PubMed DOI PMC
Oliveira MR, Tafuri WL, Afonso LC, Oliveira MA, Nicoli JR, Vieira EC, et al. . Germ-free mice produce high levels of interferon-gamma in response to infection with Leishmania major but fail to heal lesions. Parasitology. (2005) 131:477–88. doi: 10.1017/S0031182005008073 PubMed DOI
Ehrchen J, Sindrilaru A, Grabbe S, Schonlau F, Schlesiger C, Sorg C, et al. . Senescent BALB/c mice are able to develop resistance to Leishmania major infection. Infect Immun. (2004) 72:5106–14. doi: 10.1128/IAI.72.9.5106-5114.2004 PubMed DOI PMC
Sadlova J, Svobodova M, Volf P. Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol. (1999) 93:599–611. doi: 10.1080/00034989958104 PubMed DOI
Grekov I, Svobodova M, Nohynkova E, Lipoldova M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods. (2011) 87:273–7. doi: 10.1016/j.mimet.2011.08.012 PubMed DOI
Nemati Haravani T, Parvizi P, Hejazi SH, Sedaghat MM, Eskandarian A, Nateghi Rostami M. Evaluation of expression variations in virulence-related genes of Leishmania major after several culture passages compared with Phlebotomus papatasi isolated promastigotes. PloS One. (2023) 18:e0284240. doi: 10.1371/journal.pone.0284240 PubMed DOI PMC
Serafim TD, Coutinho-Abreu IV, Dey R, Kissinger R, Valenzuela JG, Oliveira F, et al. . Leishmaniasis: the act of transmission. Trends Parasitol. (2021) 37:976–87. doi: 10.1016/j.pt.2021.07.003 PubMed DOI
Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. (1989) 169:59–72. doi: 10.1084/jem.169.1.59 PubMed DOI PMC
Sadick MD, Locksley RM, Tubbs C, Raff HV. Murine cutaneous leishmaniasis: resistance correlates with the capacity to generate interferon-gamma in response to Leishmania antigens in vitro . J Immunol. (1986) 136:655–61. doi: 10.4049/jimmunol.136.2.655 PubMed DOI
Soong L, Henard CA, Melby PC. Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol. (2012) 34:735–51. doi: 10.1007/s00281-012-0350-8 PubMed DOI PMC
Martinez JE, Valderrama L, Gama V, Leiby DA, Saravia NG. Clonal diversity in the expression and stability of the metastatic capability of Leishmania guyanensis in the golden hamster. J Parasitol. (2000) 86:792–9. doi: 10.1645/0022-3395(2000)086[0792:CDITEA]2.0.CO;2 PubMed DOI
Bogdan C, Rollinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol. (2000) 12:64–76. doi: 10.1016/S0952-7915(99)00052-7 PubMed DOI
Van Assche T, Deschacht M, da Luz RA, Maes L, Cos P. Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med. (2011) 51:337–51. doi: 10.1016/j.freeradbiomed.2011.05.011 PubMed DOI
Rocha FJ, Schleicher U, Mattner J, Alber G, Bogdan C. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) Braziliensis in mice. Infect Immun. (2007) 75:3823–32. doi: 10.1128/IAI.01335-06 PubMed DOI PMC
Mattner J, Schindler H, Diefenbach A, Rollinghoff M, Gresser I, Bogdan C. Regulation of type 2 nitric oxide synthase by type 1 interferons in macrophages infected with Leishmania major. Eur J Immunol. (2000) 30:2257–67. doi: 10.1002/1521-4141(2000)30:8<2257::AID-IMMU2257>3.0.CO;2-U PubMed DOI
Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. . Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. (1995) 375:408–11. doi: 10.1038/375408a0 PubMed DOI
Carneiro PP, Conceicao J, Macedo M, Magalhaes V, Carvalho EM, Bacellar O. The role of nitric oxide and reactive oxygen species in the killing of leishmania Braziliensis by monocytes from patients with cutaneous leishmaniasis. PloS One. (2016) 11:e0148084. doi: 10.1371/journal.pone.0148084 PubMed DOI PMC
Gantt KR, Goldman TL, McCormick ML, Miller MA, Jeronimo SM, Nascimento ET, et al. . Oxidative responses of human and murine macrophages during phagocytosis of Leishmania chagasi. J Immunol. (2001) 167:893–901. doi: 10.4049/jimmunol.167.2.893 PubMed DOI
Tomiotto-Pellissier F, Bortoleti B, Assolini JP, Goncalves MD, Carloto ACM, Miranda-Sapla MM, et al. . Macrophage polarization in leishmaniasis: broadening horizons. Front Immunol. (2018) 9:2529. doi: 10.3389/fimmu.2018.02529 PubMed DOI PMC
Gaur U, Roberts SC, Dalvi RP, Corraliza I, Ullman B, Wilson ME. An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J Immunol. (2007) 179:8446–53. doi: 10.4049/jimmunol.179.12.8446 PubMed DOI
Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol. (2009) 182:3039–46. doi: 10.4049/jimmunol.0713598 PubMed DOI PMC
Nateghi Rostami M, Seyyedan Jasbi E, Khamesipour A, Mohammadi AM. Tumour Necrosis Factor-alpha (TNF-alpha) and its soluble receptor type 1 (sTNFR I) in human active and healed leishmaniases. Parasite Immunol. (2016) 38:255–60. doi: 10.1111/pim.2016.38.issue-4 PubMed DOI
Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. (2007) 19:652–7. doi: 10.1016/j.coi.2007.07.020 PubMed DOI PMC
Banerjee A, Bhattacharya P, Joshi AB, Ismail N, Dey R, Nakhasi HL. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines. Cell Immunol. (2016) 309:37–41. doi: 10.1016/j.cellimm.2016.07.004 PubMed DOI
van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, et al. . Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol. (2004) 173:6521–5. doi: 10.4049/jimmunol.173.11.6521 PubMed DOI
McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. . The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo . Nat Immunol. (2009) 10:314–24. doi: 10.1038/ni.1698 PubMed DOI PMC
Bacellar O, Faria D, Nascimento M, Cardoso TM, Gollob KJ, Dutra WO, et al. . Interleukin 17 production among patients with American cutaneous leishmaniasis. J Infect diseases. (2009) 200:75–8. doi: 10.1086/599380 PubMed DOI PMC
Souza MA, Castro MC, Oliveira AP, Almeida AF, Reis LC, Silva CJ, et al. . American tegumentary leishmaniasis: cytokines and nitric oxide in active disease and after clinical cure, with or without chemotherapy. Scand J Immunol. (2012) 76:175–80. doi: 10.1111/j.1365-3083.2012.02717.x PubMed DOI
Darzi F, Davoudian R, Nateghi Rostami M. Differential inflammatory responses associated with Leishmania major and L tropica in culture. Parasite Immunol. (2021) 43:e12841. doi: 10.1111/pim.12841 PubMed DOI
Keshavarz Valian H, Nateghi Rostami M, Tasbihi M, Miramin Mohammadi A, Eskandari SE, Sarrafnejad A, et al. . CCR7+ central and CCR7- effector memory CD4+ T cells in human cutaneous leishmaniasis. J Clin Immunol. (2013) 33:220–34. doi: 10.1007/s10875-012-9788-7 PubMed DOI
Khamesipour A, Nateghi Rostami M, Tasbihi M, Miramin Mohammadi A, Shahrestani T, Sarrafnejad A, et al. . Phenotyping of circulating CD8(+) T cell subsets in human cutaneous leishmaniasis. Microbes infection/Institut Pasteur. (2012) 14:702–11. doi: 10.1016/j.micinf.2012.02.006 PubMed DOI
Nateghi Rostami M, Seyyedan Jasbi E, Khamesipour A, Miramin Mohammadi A. Plasma levels of tumor necrosis factor-alpha (TNF-alpha), TNF-alpha soluble receptor type 1 (sTNFR I) and IL-22 in human leishmaniasis. Trop Biomed. (2015) 32:478–84. PubMed
Miramin-Mohammadi A, Javadi A, Eskandari SE, Nateghi-Rostami M, Khamesipour A. Immune Responses in Cutaneous Leishmaniasis: In vitro Thelper1/Thelper2 Cytokine Profiles Using Live Versus Killed Leishmania major. J Arthropod Borne Dis. (2021) 15:126–35. doi: 10.18502/jad.v15i1.6491 PubMed DOI PMC
McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev. (2004) 201:206–24. doi: 10.1111/j.0105-2896.2004.00190.x PubMed DOI
Sacks D, Anderson C. Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev. (2004) 201:225–38. doi: 10.1111/j.0105-2896.2004.00185.x PubMed DOI
Fromm PD, Kling JC, Remke A, Bogdan C, Korner H. Fatal leishmaniasis in the absence of TNF despite a strong th1 response. Front Microbiol. (2015) 6:1520. doi: 10.3389/fmicb.2015.01520 PubMed DOI PMC
Campos-Neto A. Anti-leishmania vaccine. In: Farrel JP, editor. Leishmania. Kluwer Academic Publishers, Boston: (2002). p. 169–90.
Sjölander A, Baldwin TM, Curtis JM, Bengtsson KL, Handman E. Vaccination with recombinant Parasite Surface Antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine. (1998) 16:2077–84. doi: 10.1016/S0264-410X(98)00075-9 PubMed DOI
Uzonna JE, Spath GF, Beverley SM, Scott P. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol. (2004) 172:3793–7. doi: 10.4049/jimmunol.172.6.3793 PubMed DOI
Rocha PN, Almeida RP, Bacellar O, de Jesus AR, Filho DC, Filho AC, et al. . Down-regulation of Th1 type of response in early human American cutaneous leishmaniasis. J Infect diseases. (1999) 180:1731–4. doi: 10.1086/jid.1999.180.issue-5 PubMed DOI
Oliveira WN, Ribeiro LE, Schrieffer A, MaChado P, Carvalho EM, Bacellar O. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of human tegumentary leishmaniasis. Cytokine. (2014) 66:127–32. doi: 10.1016/j.cyto.2013.12.016 PubMed DOI PMC
Gaze ST, Dutra WO, Lessa M, Lessa H, Guimaraes LH, Jesus AR, et al. . Mucosal leishmaniasis patients display an activated inflammatory T-cell phenotype associated with a nonbalanced monocyte population. Scand J Immunol. (2006) 63:70–8. doi: 10.1111/j.1365-3083.2005.01707.x PubMed DOI
Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. (2016) 16:581–92. doi: 10.1038/nri.2016.72 PubMed DOI
Faria DR, Gollob KJ, Barbosa J, Jr., Schriefer A, MaChado PR, Lessa H, et al. . Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun. (2005) 73:7853–9. doi: 10.1128/IAI.73.12.7853-7859.2005 PubMed DOI PMC
Bacellar O, Lessa H, Schriefer A, MaChado P, Ribeiro de Jesus A, Dutra WO, et al. . Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infect Immun. (2002) 70:6734–40. doi: 10.1128/IAI.70.12.6734-6740.2002 PubMed DOI PMC
Nylen S, Eidsmo L. Tissue damage and immunity in cutaneous leishmaniasis. Parasite Immunol. (2012) 34:551–61. doi: 10.1111/pim.2012.34.issue-12 PubMed DOI
Dubie T, Mohammed Y. Review on the role of host immune response in protection and immunopathogenesis during cutaneous leishmaniasis infection. J Immunol Res. (2020) 2020:2496713. doi: 10.1155/2020/2496713 PubMed DOI PMC
Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. (2002) 420:502–7. doi: 10.1038/nature01152 PubMed DOI
Belkaid Y. The role of CD4(+)CD25(+) regulatory T cells in Leishmania infection. Expert Opin Biol Ther. (2003) 3:875–85. doi: 10.1517/14712598.3.6.875 PubMed DOI
Attia H, Sghaier MR, Bali A, Guerfali FZ, Chlif S, Atri C, et al. . Intra-specific diversity of leishmania major isolates: A key determinant of Tunisian zoonotic cutaneous leishmaniasis clinical polymorphism. Microorganisms. (2022) 10(3):505. doi: 10.3390/microorganisms10030505 PubMed DOI PMC
Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WL, Clarencio J, et al. . Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol. (2010) 40:2830–6. doi: 10.1002/eji.200940115 PubMed DOI
Elso CM, Roberts LJ, Smyth GK, Thomson RJ, Baldwin TM, Foote SJ, et al. . Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2-independent pathway. Genes Immun. (2004) 5:93–100. doi: 10.1038/sj.gene.6364042 PubMed DOI
Babay BE, Louzir H, Kebaier C, Boubaker S, Dellagi K, Cazenave PA. Inbred strains derived from feral mice reveal new pathogenic mechanisms of experimental leishmaniasis due to Leishmania major. Infect Immun. (2004) 72:4603–11. doi: 10.1128/IAI.72.8.4603-4611.2004 PubMed DOI PMC
Kebaier C, Louzir H, Chenik M, Ben Salah A, Dellagi K. Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infect Immun. (2001) 69:4906–15. doi: 10.1128/IAI.69.8.4906-4915.2001 PubMed DOI PMC
Alimohammadian MH, Darabi H, Ajdary S, Khaze V, Torkabadi E. Genotypically distinct strains of Leishmania major display diverse clinical and immunological patterns in BALB/c mice. Infection Genet evolution: J Mol Epidemiol evolutionary Genet Infect diseases. (2010) 10:969–75. doi: 10.1016/j.meegid.2010.06.006 PubMed DOI
Asadpour A, Riazi-Rad F, Khaze V, Ajdary S, Alimohammadian MH. Distinct strains of Leishmania major induce different cytokine mRNA expression in draining lymph node of BALB/c mice. Parasite Immunol. (2013) 35:42–50. doi: 10.1111/pim.2012.35.issue-1 PubMed DOI
Darabi S, Khaze V, Riazi-Rad F, Darabi H, Bahrami F, Ajdary S, et al. . Leishmania major strains isolated from distinct endemic areas show diverse cytokine mRNA expression levels in C57BL/6 mice: Toward selecting an ideal strain for the vaccine studies. Cytokine. (2015) 76:303–8. doi: 10.1016/j.cyto.2015.05.022 PubMed DOI
Hosseini M, Nateghi Rostami M, Hosseini Doust R, Khamesipour A. Multilocus sequence typing analysis of Leishmania clinical isolates from cutaneous leishmaniasis patients of Iran. Infection Genet evolution: J Mol Epidemiol evolutionary Genet Infect diseases. (2020) 85:104533. doi: 10.1016/j.meegid.2020.104533 PubMed DOI
Uzonna JE, Wei G, Yurkowski D, Bretscher P. Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. J Immunol. (2001) 167:6967–74. doi: 10.4049/jimmunol.167.12.6967 PubMed DOI
Lira R, Doherty M, Modi G, Sacks D. Evolution of lesion formation, parasitic load, immune response, and reservoir potential in C57BL/6 mice following high- and low-dose challenge with Leishmania major. Infect Immun. (2000) 68:5176–82. doi: 10.1128/IAI.68.9.5176-5182.2000 PubMed DOI PMC
Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol. (2000) 165:969–77. doi: 10.4049/jimmunol.165.2.969 PubMed DOI
Loeuillet C, Banuls AL, Hide M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasit Vectors. (2016) 9:144. doi: 10.1186/s13071-016-1413-9 PubMed DOI PMC
Ji J, Sun J, Qi H, Soong L. Analysis of T helper cell responses during infection with Leishmania amazonensis. Am J Trop Med hygiene. (2002) 66:338–45. doi: 10.4269/ajtmh.2002.66.338 PubMed DOI
Soong L, Chang CH, Sun J, Longley BJ, Jr., Ruddle NH, Flavell RA, et al. . Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol. (1997) 158:5374–83. doi: 10.4049/jimmunol.158.11.5374 PubMed DOI
Afonso LC, Scott P. Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect Immun. (1993) 61:2952–9. doi: 10.1128/iai.61.7.2952-2959.1993 PubMed DOI PMC
Childs GE, Lightner LK, McKinney L, Groves MG, Price EE, Hendricks LD. Inbred mice as model hosts for cutaneous leishmaniasis. I. Resistance and susceptibility to infection with Leishmania Braziliensis, L. mexicana and L. aethiopica. Ann Trop Med Parasitol. (1984) 78:25–34. doi: 10.1080/00034983.1984.11811769 PubMed DOI
Pereira CG, Silva AL, de Castilhos P, Mastrantonio EC, Souza RA, Romao RP, et al. . Different isolates from Leishmania Braziliensis complex induce distinct histopathological features in a murine model of infection. Veterinary Parasitol. (2009) 165:231–40. doi: 10.1016/j.vetpar.2009.07.019 PubMed DOI
DeKrey GK, Lima HC, Titus RG. Analysis of the immune responses of mice to infection with Leishmania Braziliensis. Infect Immun. (1998) 66:827–9. doi: 10.1128/IAI.66.2.827-829.1998 PubMed DOI PMC
de Moura TR, Novais FO, Oliveira F, Clarencio J, Noronha A, Barral A, et al. . Toward a novel experimental model of infection to study American cutaneous leishmaniasis caused by Leishmania Braziliensis. Infect Immun. (2005) 73:5827–34. doi: 10.1128/IAI.73.9.5827-5834.2005 PubMed DOI PMC
Oliveira DM, Costa MA, Chavez-Fumagalli MA, Valadares DG, Duarte MC, Costa LE, et al. . Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitol Res. (2012) 110:1277–85. doi: 10.1007/s00436-011-2628-5 PubMed DOI
Honore S, Garin YJ, Sulahian A, Gangneux JP, Derouin F. Influence of the host and parasite strain in a mouse model of visceral Leishmania infantum infection. FEMS Immunol Med Microbiol. (1998) 21:231–9. doi: 10.1016/S0928-8244(98)00079-0 PubMed DOI
Ahmed S, Colmenares M, Soong L, Goldsmith-Pestana K, Munstermann L, Molina R, et al. . Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun. (2003) 71:401–10. doi: 10.1128/IAI.71.1.401-410.2003 PubMed DOI PMC
Kaye PM, Curry AJ, Blackwell JM. Differential production of Th1- and Th2-derived cytokines does not determine the genetically controlled or vaccine-induced rate of cure in murine visceral leishmaniasis. J Immunol. (1991) 146:2763–70. doi: 10.4049/jimmunol.146.8.2763 PubMed DOI
Murray HW. Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. J Infect diseases. (1997) 175:1477–9. doi: 10.1086/jid.1997.175.issue-6 PubMed DOI
Murray HW, Hariprashad J, Coffman RL. Behavior of visceral Leishmania donovani in an experimentally induced T helper cell 2 (Th2)-associated response model. J Exp Med. (1997) 185:867–74. doi: 10.1084/jem.185.5.867 PubMed DOI PMC
Murray HW. Tissue granuloma structure-function in experimental visceral leishmaniasis. Int J Exp pathology. (2001) 82:249–67. doi: 10.1046/j.1365-2613.2001.00199.x PubMed DOI PMC
Neal RA, Hale C. A comparative study of susceptibility of inbred and outbred mouse strains compared with hamsters to infection with New World cutaneous leishmaniases. Parasitology. (1983) 87:7–13. doi: 10.1017/S0031182000052379 PubMed DOI
Munoz-Durango N, Gomez A, Garcia-Valencia N, Roldan M, Ochoa M, Bautista-Erazo DE, et al. . A mouse model of ulcerative cutaneous leishmaniasis by leishmania (Viannia) panamensis to investigate infection, pathogenesis, immunity, and therapeutics. Front Microbiol. (2022) 13:907631. doi: 10.3389/fmicb.2022.907631 PubMed DOI PMC
Nabors GS, Farrell JP. Site-specific immunity to Leishmania major in SWR mice: the site of infection influences susceptibility and expression of the antileishmanial immune response. Infect Immun. (1994) 62:3655–62. doi: 10.1128/iai.62.9.3655-3662.1994 PubMed DOI PMC
Krishnan L, Guilbert LJ, Wegmann TG, Belosevic M, Mosmann TR. T helper 1 response against Leishmania major in pregnant C57BL/6 mice increases implantation failure and fetal resorptions. Correlation with increased IFN-gamma and TNF and reduced IL-10 production by placental cells. J Immunol. (1996) 156:653–62. doi: 10.4049/jimmunol.156.2.653 PubMed DOI
Satoskar AR, Rodig S, Telford SR, 3rd, Satoskar AA, Ghosh SK, von Lichtenberg F, et al. . IL-12 gene-deficient C57BL/6 mice are susceptible to Leishmania donovani but have diminished hepatic immunopathology. Eur J Immunol. (2000) 30:834–9. doi: 10.1002/1521-4141(200003)30:3<834::AID-IMMU834>3.0.CO;2-9 PubMed DOI
Murray HW, Hariprashad J. Interleukin 12 is effective treatment for an established systemic intracellular infection: experimental visceral leishmaniasis. J Exp Med. (1995) 181:387–91. doi: 10.1084/jem.181.1.387 PubMed DOI PMC
Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. Immunol Today. (2000) 21:73–8. doi: 10.1016/S0167-5699(99)01549-2 PubMed DOI
Melby PC, Tabares A, Restrepo BI, Cardona AE, McGuff HS, Teale JM. Leishmania donovani: evolution and architecture of the splenic cellular immune response related to control of infection. Exp Parasitol. (2001) 99:17–25. doi: 10.1006/expr.2001.4640 PubMed DOI
Rodrigues OR, Marques C, Soares-Clemente M, Ferronha MH, Santos-Gomes GM. Identification of regulatory T cells during experimental Leishmania infantum infection. Immunobiology. (2009) 214:101–11. doi: 10.1016/j.imbio.2008.07.001 PubMed DOI
Squires KE, Kirsch M, Silverstein SC, Acosta A, McElrath MJ, Murray HW. Defect in the tissue cellular immune response: experimental visceral leishmaniasis in euthymic C57BL/6 ep/ep mice. Infect Immun. (1990) 58:3893–8. doi: 10.1128/iai.58.12.3893-3898.1990 PubMed DOI PMC
Baptista-Fernandes T, Marques C, Roos Rodrigues O, Santos-Gomes GM. Intra-specific variability of virulence in Leishmania infantum zymodeme MON-1 strains. Comp immunology Microbiol Infect diseases. (2007) 30:41–53. doi: 10.1016/j.cimid.2006.10.001 PubMed DOI
Ferreira-Paes T, Charret KDS, Ribeiro M, Rodrigues RF, Leon LL. Comparative analysis of biological aspects of Leishmania infantum strains. PloS One. (2020) 15:e0230545. doi: 10.1371/journal.pone.0230545 PubMed DOI PMC
Kaur S, Kaur T, Garg N, Mukherjee S, Raina P, Athokpam V. Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitol Res. (2008) 103:1413–9. doi: 10.1007/s00436-008-1150-x PubMed DOI
Rolao N, Melo C, Campino L. Influence of the inoculation route in BALB/c mice infected by Leishmania infantum. Acta tropica. (2004) 90:123–6. doi: 10.1016/j.actatropica.2003.09.010 PubMed DOI
Rosypal AC, Zajac AM, Troy GC, Lindsay DS. Infections in immunocompetent and immune-deficient mice with promastigotes of a North American isolate of Leishmania infantum. Veterinary Parasitol. (2005) 130:19–27. doi: 10.1016/j.vetpar.2005.03.017 PubMed DOI
Requena JM, Soto M, Doria MD, Alonso C. Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Veterinary Immunol immunopathology. (2000) 76:269–81. doi: 10.1016/S0165-2427(00)00221-X PubMed DOI
Melby PC, Chandrasekar B, Zhao W, Coe JE. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol. (2001) 166:1912–20. doi: 10.4049/jimmunol.166.3.1912 PubMed DOI
Nieto A, Dominguez-Bernal G, Orden JA, de la Fuente R, Madrid-Elena N, Carrion J. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Veterinary Res. (2011) 42:39. doi: 10.1186/1297-9716-42-39 PubMed DOI PMC
Mukherjee P, Ghosh AK, Ghose AC. Infection pattern and immune response in the spleen and liver of BALB/c mice intracardially infected with Leishmania donovani amastigotes. Immunol letters. (2003) 86:131–8. doi: 10.1016/S0165-2478(03)00021-X PubMed DOI
Carrion J, Nieto A, Iborra S, Iniesta V, Soto M, Folgueira C, et al. . Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunol. (2006) 28:173–83. doi: 10.1111/j.1365-3024.2006.00817.x PubMed DOI
Alexander J. Sex differences and cross-immunity in DBA/2 mice infected with L. mexicana and L. major. Parasitology. (1988) 96:297–302. doi: 10.1017/S0031182000058303 PubMed DOI
Demant P, Hart AA. Recombinant congenic strains–a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics. (1986) 24:416–22. doi: 10.1007/BF00377961 PubMed DOI
Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. (2016) 152:244–8. doi: 10.1016/j.lfs.2015.10.025 PubMed DOI
Sohrabi Y, Reinecke H, Joosten LAB, Netea MG. Deadly COVID-19 among the elderly: Innate immune memory helping those most in need. Med. (2021) 2:378–83. doi: 10.1016/j.medj.2021.02.004 PubMed DOI PMC
Salgado CL, Corea AFM, Covre LP, Fonseca-Martins AMD, Falqueto A, Guedes HLM, et al. . Intranasal delivery of LaAg vaccine improves immunity of aged mice against visceral Leishmaniasis. Acta tropica. (2024) 252:107125. doi: 10.1016/j.actatropica.2024.107125 PubMed DOI
Boy-Waxman S, Olivier M, Cermakian N. Clockwork intruders: Do parasites manipulate their hosts’ circadian rhythms? Curr Res Parasitol Vector Borne Dis. (2024) 5:100171. doi: 10.1016/j.crpvbd.2024.100171 PubMed DOI PMC
Dominguez-Andres J, Reinecke H, Sohrabi Y. The immune hunger games: the effects of fasting on monocytes. Cell Mol Immunol. (2023) 20:1098–100. doi: 10.1038/s41423-023-01033-w PubMed DOI PMC
Pick R, He W, Chen CS, Scheiermann C. Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol. (2019) 40:524–37. doi: 10.1016/j.it.2019.03.010 PubMed DOI
Zhang Q, Schwarz D, Cheng Y, Sohrabi Y. Unraveling host genetics and microbiome genome crosstalk: a novel therapeutic approach. Trends Mol Med. (2024) 30:1007–9. doi: 10.1016/j.molmed.2024.06.007 PubMed DOI
Misra P, Singh S. Site specific microbiome of Leishmania parasite and its cross-talk with immune milieu. Immunol letters. (2019) 216:79–88. doi: 10.1016/j.imlet.2019.10.004 PubMed DOI
Mrazek J, Mrazkova L, Mekadim C, Jarosikova T, Krayem I, Sohrabi Y, et al. . Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice. Appl Microbiol Biotechnol. (2024) 108:145. doi: 10.1007/s00253-024-13002-y PubMed DOI PMC
Meazzi S, Lauzi S, Martini V, Ferriani R, Peri M, Zanzani SA, et al. . Gut microbiota and lymphocyte subsets in canine leishmaniasis. Front Vet Sci. (2022) 9:868967. doi: 10.3389/fvets.2022.868967 PubMed DOI PMC
Sarnaglia GD, Covre LP, Pereira FE, HL DEMG, Faria AM, Dietze R, et al. . Diet-induced obesity promotes systemic inflammation and increased susceptibility to murine visceral leishmaniasis. Parasitology. (2016) 143:1647–55. doi: 10.1017/S003118201600127X PubMed DOI
Lago T, Carvalho LP, Nascimento M, Guimaraes LH, Lago J, Castellucci L, et al. . Influence of obesity on clinical manifestations and response to therapy in cutaneous leishmaniasis caused by leishmania Braziliensis. Clin Infect Dis. (2021) 73:1020–6. doi: 10.1093/cid/ciab236 PubMed DOI PMC
Martins VD, Vaz L, Barbosa SC, Paixao PHM, Torres L, de Oliveira MFA, et al. . Obesity alters the macrophages’ response to Leishmania major in C57BL/6 mice. J Leukoc Biol. (2024) 116:1372–84. doi: 10.1093/jleuko/qiae171 PubMed DOI
Amorim Sacramento L, Gonzalez-Lombana C, Scott P. Malnutrition disrupts adaptive immunity during visceral leishmaniasis by enhancing IL-10 production. PloS Pathog. (2024) 20:e1012716. doi: 10.1101/2024.06.06.597776 PubMed DOI PMC
Osorio EY, Uscanga-Palomeque A, Patterson GT, Cordova E, Travi BL, Soong L, et al. . Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PloS Negl Trop Dis. (2023) 17:e0011040. doi: 10.1371/journal.pntd.0011040 PubMed DOI PMC
Nweze JA, Nweze EI, Onoja US. Nutrition, malnutrition, and leishmaniasis. Nutrition. (2020) 73:110712. doi: 10.1016/j.nut.2019.110712 PubMed DOI
Bennis I, De Brouwere V, Belrhiti Z, Sahibi H, Boelaert M. Psychosocial burden of localised cutaneous Leishmaniasis: a scoping review. BMC Public Health. (2018) 18:358. doi: 10.1186/s12889-018-5260-9 PubMed DOI PMC
Grifferty G, Shirley H, McGloin J, Kahn J, Orriols A, Wamai R. Vulnerabilities to and the socioeconomic and psychosocial impacts of the leishmaniases: A review. Res Rep Trop Med. (2021) 12:135–51. doi: 10.2147/RRTM.S278138 PubMed DOI PMC
Pires M, Wright B, Kaye PM, da Conceicao V, Churchill RC. The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. PloS One. (2019) 14:e0223313. doi: 10.1371/journal.pone.0223313 PubMed DOI PMC
Chahed MK, Bellali H, Ben Jemaa S, Bellaj T. Psychological and psychosocial consequences of zoonotic cutaneous leishmaniasis among women in Tunisia: preliminary findings from an exploratory study. PloS Negl Trop Dis. (2016) 10:e0005090. doi: 10.1371/journal.pntd.0005090 PubMed DOI PMC
Portes A, Giestal-de-Araujo E, Fagundes A, Pandolfo P, de Sa Geraldo A, Lira ML, et al. . Leishmania amazonensis infection induces behavioral alterations and modulates cytokine and neurotrophin production in the murine cerebral cortex. J Neuroimmunol. (2016) 301:65–73. doi: 10.1016/j.jneuroim.2016.11.003 PubMed DOI
Pal B, Murti K, Siddiqui NA, Das P, Lal CS, Babu R, et al. . Assessment of quality of life in patients with post kalaazar dermal leishmaniasis. Health Qual Life Outcomes. (2017) 15:148. doi: 10.1186/s12955-017-0720-y PubMed DOI PMC
Garapati P, Pal B, Siddiqui NA, Bimal S, Das P, Murti K, et al. . Knowledge, stigma, health seeking behaviour and its determinants among patients with post kalaazar dermal leishmaniasis, Bihar, India. PloS One. (2018) 13:e0203407. doi: 10.1371/journal.pone.0203407 PubMed DOI PMC
Amni F, Maleki-Ravasan N, Nateghi-Rostami M, Hadighi R, Karimian F, Meamar AR, et al. . Corrigendum: Co-infection of Phlebotomus papatasi (Diptera: Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice. Front Cell Infect Microbiol. (2023) 13:1185912. doi: 10.3389/fcimb.2023.1185912 PubMed DOI PMC
Rohousova I, Volf P, Lipoldova M. Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunol. (2005) 27:469–73. doi: 10.1111/j.1365-3024.2005.00787.x PubMed DOI
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PloS Negl Trop Dis. (2017) 11:e0005600. doi: 10.1371/journal.pntd.0005600 PubMed DOI PMC
Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infection Genet evolution: J Mol Epidemiol evolutionary Genet Infect diseases. (2014) 28:691–703. doi: 10.1016/j.meegid.2014.07.028 PubMed DOI PMC
Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. (2004) 430:463–7. doi: 10.1038/nature02675 PubMed DOI PMC
Hessler JR. The history of environmental improvements in laboratory animal science: caging, systems, equipment, and facility design. Fifty Years of Laboratory Animal Science. Memphis, TN: American Association for Laboratory Animal Science; (1999).
Foster HL. Housing of disease-free vertebrates. Ann N Y Acad Sci. (1959) 78:80–8. doi: 10.1111/j.1749-6632.1959.tb53096.x PubMed DOI
Dobson GP, Letson HL, Biros E, Morris J. Specific pathogen-free (SPF) animal status as a variable in biomedical research: Have we come full circle? EBioMedicine. (2019) 41:42–3. doi: 10.1016/j.ebiom.2019.02.038 PubMed DOI PMC
Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. . Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. (2016) 532:512–6. doi: 10.1038/nature17655 PubMed DOI PMC
Karimkhani C, Wanga V, Coffeng LE, Naghavi P, Dellavalle RP, Naghavi M. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. (2016) 16:584–91. doi: 10.1016/S1473-3099(16)00003-7 PubMed DOI
Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, et al. . Global distribution maps of the leishmaniases. Elife. (2014) 3:e02851. doi: 10.7554/eLife.02851 PubMed DOI PMC
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. . Leishmaniasis worldwide and global estimates of its incidence. PloS One. (2012) 7:e35671. doi: 10.1371/journal.pone.0035671 PubMed DOI PMC
Knight CA, Harris DR, Alshammari SO, Gugssa A, Young T, Lee CM. Leishmaniasis: Recent epidemiological studies in the Middle East. Front Microbiol. (2022) 13:1052478. doi: 10.3389/fmicb.2022.1052478 PubMed DOI PMC
van Henten S, Adriaensen W, Fikre H, Akuffo H, Diro E, Hailu A, et al. . Cutaneous leishmaniasis due to leishmania aethiopica. EClinicalMedicine. (2018) 6:69–81. doi: 10.1016/j.eclinm.2018.12.009 PubMed DOI PMC
de Freitas Milagres T, Lopez-de-Felipe M, da Silva WJ, Martin-Martin I, Galvez R, da Silva OS. Same parasite, different outcomes: unraveling the epidemiology of Leishmania infantum infection in Brazil and Spain. Trends Parasitol. (2023) 39:774–85. doi: 10.1016/j.pt.2023.06.008 PubMed DOI
Herrera G, Barragan N, Luna N, Martinez D, De Martino F, Medina J, et al. . An interactive database of Leishmania species distribution in the Americas. Sci Data. (2020) 7:110. doi: 10.1038/s41597-020-0451-5 PubMed DOI PMC
Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol. (2005) 35:1169–80. doi: 10.1016/j.ijpara.2005.07.001 PubMed DOI
Soares L, Abad-Franch F, Ferraz G. Epidemiology of cutaneous leishmaniasis in central Amazonia: a comparison of sex-biased incidence among rural settlers and field biologists. Trop Med Int Health. (2014) 19:988–95. doi: 10.1111/tmi.2014.19.issue-8 PubMed DOI
Doherty TM, Coffman RL. Leishmania major: effect of infectious dose on T cell subset development in BALB/c mice. Exp Parasitol. (1996) 84:124–35. doi: 10.1006/expr.1996.0098 PubMed DOI
Uzonna JE, Joyce KL, Scott P. Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon gamma-producing CD8+ T cells. J Exp Med. (2004) 199:1559–66. doi: 10.1084/jem.20040172 PubMed DOI PMC
Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science. (1992) 257:539–42. doi: 10.1126/science.1636090 PubMed DOI
Anderson CF, Lira R, Kamhawi S, Belkaid Y, Wynn TA, Sacks D. IL-10 and TGF-β Control the establishment of persistent and transmissible infections produced by leishmania tropica in C57BL/6 mice. J Immunol. (2008) 180:4090–7. doi: 10.4049/jimmunol.180.6.4090 PubMed DOI