Multi-photon above threshold ionization of multi-electron atoms and molecules using the R-matrix approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-15548Y
Czech Science Foundation
20/SCI/003
PRIMUS (Charles University)
LM2018140
e-Infrasktrutura CZ
LM2015070
IT4Innovations National Supercomputing Center
PubMed
34083556
PubMed Central
PMC8175388
DOI
10.1038/s41598-021-89733-z
PII: 10.1038/s41598-021-89733-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We formulate a computationally efficient time-independent method based on the multi-electron molecular R-matrix formalism. This method is used to calculate transition matrix elements for the multi-photon ionization of atoms and molecules under the influence of a perturbative field. The method relies on the partitioning of space which allows us to calculate the infinite-range free-free dipole integrals analytically in the outer region, beyond the range of the initial bound wave function. This approach is valid for an arbitrary order, that is, any number of photons absorbed both in the bound and the continuum part of the spectrum (below- and above-threshold ionization). We calculate generalized multi-photon cross sections and angular distributions of different systems (H, He, [Formula: see text], [Formula: see text]) and validate our approach by comparison with data from the literature.
Zobrazit více v PubMed
Sharma A, et al. Counting the electrons in a multiphoton ionization by elastic scattering of microwaves. Sci. Rep. 2018;8:2874. doi: 10.1038/s41598-018-21234-y. PubMed DOI PMC
Vagin KY, Uryupin SA. Collective modes of plasma formed by multiphoton ionization of rarefied gas. Plasma Sources Sci. Technol. 2020;29:035005. doi: 10.1088/1361-6595/ab5e28. DOI
Sharma A, et al. Diagnostics of CO concentration in gaseous mixtures at elevated pressures by resonance enhanced multi-photon ionization and microwave scattering. J. Appl. Phys. 2020;128:141301. doi: 10.1063/5.0024194. DOI
Boesl U, et al. Resonance-enhanced multi-photon ionization: A species-selective ion source for analytical time-of-flight mass spectroscopy. Chemosphere. 1994;29:1429–1440. doi: 10.1016/0045-6535(94)90276-3. DOI
Ryszka M, et al. Dissociative multi-photon ionization of isolated uracil and uracil-adenine complexes. Int. J. Mass Spectrom. 2016;396:48–54. doi: 10.1016/j.ijms.2015.12.006. DOI
Kastner A, et al. Intermediate state dependence of the photoelectron circular dichroism of fenchone observed via femtosecond resonance-enhanced multi-photon ionization. J. Chem. Phys. 2017;147:013926. doi: 10.1063/1.4982614. PubMed DOI
Beaulieu S, et al. Multiphoton photoelectron circular dichroism of limonene with independent polarization state control of the bound-bound and bound-continuum transitions. J. Chem. Phys. 2018;149:134301. doi: 10.1063/1.5042533. PubMed DOI
Comby A, et al. Real-time determination of enantiomeric and isomeric content using photoelectron elliptical dichroism. Nat. Commun. 2018;9:5212. doi: 10.1038/s41467-018-07609-9. PubMed DOI PMC
Goetz RE, Koch CP, Greenman L. Perfect control of photoelectron anisotropy for randomly oriented ensembles of molecules by XUV REMPI and polarization shaping. J. Chem. Phys. 2019;151:074106. doi: 10.1063/1.5111362. PubMed DOI
Lux C, et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 2012;51:5001–5005. doi: 10.1002/anie.201109035. PubMed DOI
Zvorykin VD, Shutov AV, Ustinovskii NN. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility. Matter Radiat. Extremes. 2020;5:045401. doi: 10.1063/5.0004130. DOI
Shutov AV, et al. Major pathway for multiphoton air ionization at 248nm laser wavelength. Appl. Phys. Lett. 2017;111:224104. doi: 10.1063/1.5006939. DOI
Dharmadhikari AK, Dharmadhikari JA, Mathur D. Visualization of focusing–refocusing cycles during filamentation in BaF2. Appl. Phys. B. 2008;94:259. doi: 10.1007/s00340-008-3317-7. DOI
Smetanin IV, Levchenko AO, Shutov AV, Ustinovskii NN, Zvorykin VD. Role of coherent resonant nonlinear processes in the ultrashort KrF laser pulse propagation and filamentation in air. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2016;369:87–91. doi: 10.1016/j.nimb.2015.10.032. DOI
Koga JK, et al. Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses. J. Phys. D Appl. Phys. 2009;43:025204. doi: 10.1088/0022-3727/43/2/025204. DOI
Plummer M, Noble CJ. Resonant enhancement of harmonic generation in argon at 248 nm. J. Phys. B At. Mol. Opt. Phys. 2002;35:L51–L58. doi: 10.1088/0953-4075/35/2/101. DOI
Ackermann P, Münch H, Halfmann T. Resonantly-enhanced harmonic generation in argon. Opt. Express. 2012;20:13824–13832. doi: 10.1364/OE.20.013824. PubMed DOI
Ivanov IA, Kheifets AS. Resonant enhancement of generation of harmonics. Phys. Rev. A. 2008;78:053406. doi: 10.1103/PhysRevA.78.053406. DOI
Brown AC, Hutchinson S, Lysaght MA, van der Hart HW. Interference between competing pathways in atomic harmonic generation. Phys. Rev. Lett. 2012;108:063006. doi: 10.1103/PhysRevLett.108.063006. PubMed DOI
Champenois EG, et al. Involvement of a low-lying Rydberg state in the ultrafast relaxation dynamics of ethylene. J. Chem. Phys. 2016;144:014303. doi: 10.1063/1.4939220. PubMed DOI
Dahlström JM, et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 2013;414:53–64. doi: 10.1016/j.chemphys.2012.01.017. DOI
Dahlström JM, L’Huillier A, Maquet A. Introduction to attosecond delays in photoionization. J. Phys. B At. Mol. Opt. Phys. 2012;45:183001. doi: 10.1088/0953-4075/45/18/183001. DOI
Vos J, et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science. 2018;360:1326–1330. doi: 10.1126/science.aao4731. PubMed DOI
Serov VV, Kheifets AS. Time delay in XUV/IR photoionization of PubMed DOI
Bharti D, et al. Decomposition of the transition phase in multi-sideband schemes for reconstruction of attosecond beating by interference of two-photon transitions. Phys. Rev. A. 2021;103:022834. doi: 10.1103/PhysRevA.103.022834. DOI
Ngoko Djiokap JM, et al. Electron vortices in photoionization by circularly polarized attosecond pulses. Phys. Rev. Lett. 2015;115:113004. doi: 10.1103/PhysRevLett.115.113004. PubMed DOI
Pengel D, Kerbstadt S, Englert L, Bayer T, Wollenhaupt M. Control of three-dimensional electron vortices from femtosecond multiphoton ionization. Phys. Rev. A. 2017;96:043426. doi: 10.1103/PhysRevA.96.043426. PubMed DOI
Armstrong GSJ, et al. Modeling tomographic measurements of photoelectron vortices in counter-rotating circularly polarized laser pulses. Phys. Rev. A. 2019;100:063416. doi: 10.1103/PhysRevA.100.063416. DOI
Kerbstadt S, Eickhoff K, Bayer T, Wollenhaupt M. Odd electron wave packets from cycloidal ultrashort laser fields. Nat. Commun. 2019;10:658. doi: 10.1038/s41467-019-08601-7. PubMed DOI PMC
Boll DIR, Fojón AO, McCurdy CW, Palacios A. Angularly resolved two-photon above-threshold ionization of helium. Phys. Rev. A. 2019;99:023416. doi: 10.1103/PhysRevA.99.023416. DOI
Shakeshaft R. Two-photon single and double ionization of helium. Phys. Rev. A. 2007;76:063405. doi: 10.1103/PhysRevA.76.063405. DOI
Feng L, van der Hart HW. Two-photon double ionization of He. J. Phys. B At. Mol. Opt. Phys. 2003;36:L1–L7. doi: 10.1088/0953-4075/36/1/101. DOI
Sánchez I, Bachau H, Cormier E. Theory of two-photon spectroscopy of autoionizing states in helium and beryllium. J. Phys. B At. Mol. Opt. Phys. 1995;28:2367–2384. doi: 10.1088/0953-4075/28/12/007. DOI
Eberly JH, Javanainen J, Rzążevski K. Above-threshold ionisation. Phys. Rep. 1991;204:331–383. doi: 10.1088/0143-0807/9/4/004. DOI
Manakov NL, Marmo SI, Sviridov SA. Method for calculating multiphoton above-threshold processes in atoms: Two-photon above-threshold ionization. J. Exp. Theor. Phys. 2009;108:557–570. doi: 10.1134/S1063776109040025. DOI
Burke PG, Colgan J, Glass DH, Higgins K. R-matrix-Floquet theory of molecular multiphoton processes. J. Phys. B At. Mol. Opt. Phys. 2000;33:143. doi: 10.1088/0953-4075/33/2/302. DOI
Burke PG, Francken P, Joachain CJ. R-matrix-Floquet theory of multiphoton processes. Europhys. Lett. 1990;13:617–622. doi: 10.1209/0295-5075/13/7/008. DOI
Colgan J, Glass DH, Higgins K, Burke PG. R-matrix Floquet theory of molecular multiphoton processes: II. Multiphoton ionization of H2. J. Phys. B At. Mol. Opt. Phys. 2001;34:2089–2106. doi: 10.1088/0953-4075/34/11/303. DOI
Ritchie B, McGuire EJ. Two-photon ionization of DOI
Morales F, Martín F, Horner DA, Rescigno TN, McCurdy CW. Two-photon double ionization of DOI
Apalategui A, Saenz A. Multiphoton ionization of the hydrogen molecule DOI
Demekhin PV, Lagutin BM, Petrov ID. Theoretical study of angular-resolved two-photon ionization of H DOI
Larsen KA, et al. Role of dipole-forbidden autoionizing resonances in nonresonant one-color two-photon single ionization of DOI
Toffoli D, Decleva P. Density functional theory for molecular multiphoton ionization in the perturbative regime. J. Chem. Phys. 2012;137:134103. doi: 10.1063/1.4754820. PubMed DOI
Benda, J, et al. Perturbative and non-perturbative photoionization of DOI
Joachain CJ. R-matrix-Floquet theory of multiphoton processes: Concepts, results and perspectives. J. Mod. Opt. 2007;54:1859–1882. doi: 10.1080/09500340701308724. DOI
Harvey A, Brambila DS, Morales F, Smirnova O. An R-matrix approach to electron-photon-molecule collisions: Photoelectron angular distributions from aligned molecules. J. Phys. B At. Mol. Opt. Phys. 2014;47:215005. doi: 10.1088/0953-4075/47/21/215005. DOI
Mašín Z, Benda J, Gorfinkiel JD, Harvey AG, Tennyson J. UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. Comput. Phys. Commun. 2020;249:107092. doi: 10.1016/j.cpc.2019.107092. DOI
Brown AC, et al. RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Comput. Phys. Commun. 2020;250:107062. doi: 10.1016/j.cpc.2019.107062. DOI
Burke PG. R-Matrix Theory of Atomic Collisions. Springer; 2011.
Drake, G. W. (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics (Springer, 2006).
Olver, F. W. J. et al. NIST Digital Library of Mathematical Functions (2020). Release 1.0.26 of 15th March 2020.
Klarsfeld S. Two-photon ionization of atomic hydrogen in the ground state. Lettere al Nuovo Cimento. 1970;3:395–398. doi: 10.1007/BF02819081. DOI
Karule E. Two-photon ionisation of atomic hydrogen simultaneously with one-photon ionisation. J. Phys. B At. Mol. Phys. 1978;11:441–447. doi: 10.1088/0022-3700/11/3/015. DOI
Smith DGA, et al. PSI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020;152:184108. doi: 10.1063/5.0006002. PubMed DOI PMC
Zamastil J, Benda J. Quantum Mechanics and Electrodynamics. Springer; 2017.
Andrews DL, Thirunamachandran T. On three-dimensional rotational averages. J. Chem. Phys. 1977;67:5026–5033. doi: 10.1063/1.434725. DOI
Mašín Z, et al. Electron correlations and pre-collision in the re-collision picture of high harmonic generation. J. Phys. B At. Mol. Opt. Phys. 2018;51:134006. doi: 10.1088/1361-6455/aac598. DOI
Chan WF, Cooper G, Brion CE. The electronic spectrum of carbon dioxide. Discrete and continuum photoabsorption oscillator strengths (6–203 eV) Chem. Phys. 1993;178:401–413. doi: 10.1016/0301-0104(93)85079-N. DOI
Homeier HHH, Steinborn EO. Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients. J. Mol. Struct. THEOCHEM. 1996;368:31–37. doi: 10.1016/S0166-1280(96)90531-X. DOI
Aymar M, Crance M. Two-photon ionisation of atomic hydrogen in the presence of one-photon ionisation. J. Phys. B At. Mol. Opt. Phys. 1980;13:L287–L292. doi: 10.1088/0022-3700/13/9/002. DOI
Cormier E, Bachau H, Zhang J. Discretization techniques applied to the study of multiphoton excitation of resonances in helium. J. Phys. B At. Mol. Opt. Phys. 1993;26:4449–4463. doi: 10.1088/0953-4075/26/23/016. DOI
Maquet A, Véniard V, Marian TA. The Coulomb Green’s function and multiphoton calculations. J. Phys. B At. Mol. Opt. Phys. 1998;31:3743–3764. doi: 10.1088/0953-4075/31/17/004. DOI
Higham NJ. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics; 2002.
Gao B, Starace A. Numerical methods for free-free radiative transition matrix elements. Comput. Phys. 1987;1:70. doi: 10.1063/1.4903436. DOI
Influence of nuclear dynamics on molecular attosecond photoelectron interferometry