Multi-photon above threshold ionization of multi-electron atoms and molecules using the R-matrix approach

. 2021 Jun 03 ; 11 (1) : 11686. [epub] 20210603

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34083556

Grantová podpora
20-15548Y Czech Science Foundation
20/SCI/003 PRIMUS (Charles University)
LM2018140 e-Infrasktrutura CZ
LM2015070 IT4Innovations National Supercomputing Center

Odkazy

PubMed 34083556
PubMed Central PMC8175388
DOI 10.1038/s41598-021-89733-z
PII: 10.1038/s41598-021-89733-z
Knihovny.cz E-zdroje

We formulate a computationally efficient time-independent method based on the multi-electron molecular R-matrix formalism. This method is used to calculate transition matrix elements for the multi-photon ionization of atoms and molecules under the influence of a perturbative field. The method relies on the partitioning of space which allows us to calculate the infinite-range free-free dipole integrals analytically in the outer region, beyond the range of the initial bound wave function. This approach is valid for an arbitrary order, that is, any number of photons absorbed both in the bound and the continuum part of the spectrum (below- and above-threshold ionization). We calculate generalized multi-photon cross sections and angular distributions of different systems (H, He, [Formula: see text], [Formula: see text]) and validate our approach by comparison with data from the literature.

Zobrazit více v PubMed

Sharma A, et al. Counting the electrons in a multiphoton ionization by elastic scattering of microwaves. Sci. Rep. 2018;8:2874. doi: 10.1038/s41598-018-21234-y. PubMed DOI PMC

Vagin KY, Uryupin SA. Collective modes of plasma formed by multiphoton ionization of rarefied gas. Plasma Sources Sci. Technol. 2020;29:035005. doi: 10.1088/1361-6595/ab5e28. DOI

Sharma A, et al. Diagnostics of CO concentration in gaseous mixtures at elevated pressures by resonance enhanced multi-photon ionization and microwave scattering. J. Appl. Phys. 2020;128:141301. doi: 10.1063/5.0024194. DOI

Boesl U, et al. Resonance-enhanced multi-photon ionization: A species-selective ion source for analytical time-of-flight mass spectroscopy. Chemosphere. 1994;29:1429–1440. doi: 10.1016/0045-6535(94)90276-3. DOI

Ryszka M, et al. Dissociative multi-photon ionization of isolated uracil and uracil-adenine complexes. Int. J. Mass Spectrom. 2016;396:48–54. doi: 10.1016/j.ijms.2015.12.006. DOI

Kastner A, et al. Intermediate state dependence of the photoelectron circular dichroism of fenchone observed via femtosecond resonance-enhanced multi-photon ionization. J. Chem. Phys. 2017;147:013926. doi: 10.1063/1.4982614. PubMed DOI

Beaulieu S, et al. Multiphoton photoelectron circular dichroism of limonene with independent polarization state control of the bound-bound and bound-continuum transitions. J. Chem. Phys. 2018;149:134301. doi: 10.1063/1.5042533. PubMed DOI

Comby A, et al. Real-time determination of enantiomeric and isomeric content using photoelectron elliptical dichroism. Nat. Commun. 2018;9:5212. doi: 10.1038/s41467-018-07609-9. PubMed DOI PMC

Goetz RE, Koch CP, Greenman L. Perfect control of photoelectron anisotropy for randomly oriented ensembles of molecules by XUV REMPI and polarization shaping. J. Chem. Phys. 2019;151:074106. doi: 10.1063/1.5111362. PubMed DOI

Lux C, et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 2012;51:5001–5005. doi: 10.1002/anie.201109035. PubMed DOI

Zvorykin VD, Shutov AV, Ustinovskii NN. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility. Matter Radiat. Extremes. 2020;5:045401. doi: 10.1063/5.0004130. DOI

Shutov AV, et al. Major pathway for multiphoton air ionization at 248nm laser wavelength. Appl. Phys. Lett. 2017;111:224104. doi: 10.1063/1.5006939. DOI

Dharmadhikari AK, Dharmadhikari JA, Mathur D. Visualization of focusing–refocusing cycles during filamentation in BaF2. Appl. Phys. B. 2008;94:259. doi: 10.1007/s00340-008-3317-7. DOI

Smetanin IV, Levchenko AO, Shutov AV, Ustinovskii NN, Zvorykin VD. Role of coherent resonant nonlinear processes in the ultrashort KrF laser pulse propagation and filamentation in air. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2016;369:87–91. doi: 10.1016/j.nimb.2015.10.032. DOI

Koga JK, et al. Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses. J. Phys. D Appl. Phys. 2009;43:025204. doi: 10.1088/0022-3727/43/2/025204. DOI

Plummer M, Noble CJ. Resonant enhancement of harmonic generation in argon at 248 nm. J. Phys. B At. Mol. Opt. Phys. 2002;35:L51–L58. doi: 10.1088/0953-4075/35/2/101. DOI

Ackermann P, Münch H, Halfmann T. Resonantly-enhanced harmonic generation in argon. Opt. Express. 2012;20:13824–13832. doi: 10.1364/OE.20.013824. PubMed DOI

Ivanov IA, Kheifets AS. Resonant enhancement of generation of harmonics. Phys. Rev. A. 2008;78:053406. doi: 10.1103/PhysRevA.78.053406. DOI

Brown AC, Hutchinson S, Lysaght MA, van der Hart HW. Interference between competing pathways in atomic harmonic generation. Phys. Rev. Lett. 2012;108:063006. doi: 10.1103/PhysRevLett.108.063006. PubMed DOI

Champenois EG, et al. Involvement of a low-lying Rydberg state in the ultrafast relaxation dynamics of ethylene. J. Chem. Phys. 2016;144:014303. doi: 10.1063/1.4939220. PubMed DOI

Dahlström JM, et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 2013;414:53–64. doi: 10.1016/j.chemphys.2012.01.017. DOI

Dahlström JM, L’Huillier A, Maquet A. Introduction to attosecond delays in photoionization. J. Phys. B At. Mol. Opt. Phys. 2012;45:183001. doi: 10.1088/0953-4075/45/18/183001. DOI

Vos J, et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science. 2018;360:1326–1330. doi: 10.1126/science.aao4731. PubMed DOI

Serov VV, Kheifets AS. Time delay in XUV/IR photoionization of PubMed DOI

Bharti D, et al. Decomposition of the transition phase in multi-sideband schemes for reconstruction of attosecond beating by interference of two-photon transitions. Phys. Rev. A. 2021;103:022834. doi: 10.1103/PhysRevA.103.022834. DOI

Ngoko Djiokap JM, et al. Electron vortices in photoionization by circularly polarized attosecond pulses. Phys. Rev. Lett. 2015;115:113004. doi: 10.1103/PhysRevLett.115.113004. PubMed DOI

Pengel D, Kerbstadt S, Englert L, Bayer T, Wollenhaupt M. Control of three-dimensional electron vortices from femtosecond multiphoton ionization. Phys. Rev. A. 2017;96:043426. doi: 10.1103/PhysRevA.96.043426. PubMed DOI

Armstrong GSJ, et al. Modeling tomographic measurements of photoelectron vortices in counter-rotating circularly polarized laser pulses. Phys. Rev. A. 2019;100:063416. doi: 10.1103/PhysRevA.100.063416. DOI

Kerbstadt S, Eickhoff K, Bayer T, Wollenhaupt M. Odd electron wave packets from cycloidal ultrashort laser fields. Nat. Commun. 2019;10:658. doi: 10.1038/s41467-019-08601-7. PubMed DOI PMC

Boll DIR, Fojón AO, McCurdy CW, Palacios A. Angularly resolved two-photon above-threshold ionization of helium. Phys. Rev. A. 2019;99:023416. doi: 10.1103/PhysRevA.99.023416. DOI

Shakeshaft R. Two-photon single and double ionization of helium. Phys. Rev. A. 2007;76:063405. doi: 10.1103/PhysRevA.76.063405. DOI

Feng L, van der Hart HW. Two-photon double ionization of He. J. Phys. B At. Mol. Opt. Phys. 2003;36:L1–L7. doi: 10.1088/0953-4075/36/1/101. DOI

Sánchez I, Bachau H, Cormier E. Theory of two-photon spectroscopy of autoionizing states in helium and beryllium. J. Phys. B At. Mol. Opt. Phys. 1995;28:2367–2384. doi: 10.1088/0953-4075/28/12/007. DOI

Eberly JH, Javanainen J, Rzążevski K. Above-threshold ionisation. Phys. Rep. 1991;204:331–383. doi: 10.1088/0143-0807/9/4/004. DOI

Manakov NL, Marmo SI, Sviridov SA. Method for calculating multiphoton above-threshold processes in atoms: Two-photon above-threshold ionization. J. Exp. Theor. Phys. 2009;108:557–570. doi: 10.1134/S1063776109040025. DOI

Burke PG, Colgan J, Glass DH, Higgins K. R-matrix-Floquet theory of molecular multiphoton processes. J. Phys. B At. Mol. Opt. Phys. 2000;33:143. doi: 10.1088/0953-4075/33/2/302. DOI

Burke PG, Francken P, Joachain CJ. R-matrix-Floquet theory of multiphoton processes. Europhys. Lett. 1990;13:617–622. doi: 10.1209/0295-5075/13/7/008. DOI

Colgan J, Glass DH, Higgins K, Burke PG. R-matrix Floquet theory of molecular multiphoton processes: II. Multiphoton ionization of H2. J. Phys. B At. Mol. Opt. Phys. 2001;34:2089–2106. doi: 10.1088/0953-4075/34/11/303. DOI

Ritchie B, McGuire EJ. Two-photon ionization of DOI

Morales F, Martín F, Horner DA, Rescigno TN, McCurdy CW. Two-photon double ionization of DOI

Apalategui A, Saenz A. Multiphoton ionization of the hydrogen molecule DOI

Demekhin PV, Lagutin BM, Petrov ID. Theoretical study of angular-resolved two-photon ionization of H DOI

Larsen KA, et al. Role of dipole-forbidden autoionizing resonances in nonresonant one-color two-photon single ionization of DOI

Toffoli D, Decleva P. Density functional theory for molecular multiphoton ionization in the perturbative regime. J. Chem. Phys. 2012;137:134103. doi: 10.1063/1.4754820. PubMed DOI

Benda, J, et al. Perturbative and non-perturbative photoionization of DOI

Joachain CJ. R-matrix-Floquet theory of multiphoton processes: Concepts, results and perspectives. J. Mod. Opt. 2007;54:1859–1882. doi: 10.1080/09500340701308724. DOI

Harvey A, Brambila DS, Morales F, Smirnova O. An R-matrix approach to electron-photon-molecule collisions: Photoelectron angular distributions from aligned molecules. J. Phys. B At. Mol. Opt. Phys. 2014;47:215005. doi: 10.1088/0953-4075/47/21/215005. DOI

Mašín Z, Benda J, Gorfinkiel JD, Harvey AG, Tennyson J. UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. Comput. Phys. Commun. 2020;249:107092. doi: 10.1016/j.cpc.2019.107092. DOI

Brown AC, et al. RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Comput. Phys. Commun. 2020;250:107062. doi: 10.1016/j.cpc.2019.107062. DOI

Burke PG. R-Matrix Theory of Atomic Collisions. Springer; 2011.

Drake, G. W. (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics (Springer, 2006).

Olver, F. W. J. et al. NIST Digital Library of Mathematical Functions (2020). Release 1.0.26 of 15th March 2020.

Klarsfeld S. Two-photon ionization of atomic hydrogen in the ground state. Lettere al Nuovo Cimento. 1970;3:395–398. doi: 10.1007/BF02819081. DOI

Karule E. Two-photon ionisation of atomic hydrogen simultaneously with one-photon ionisation. J. Phys. B At. Mol. Phys. 1978;11:441–447. doi: 10.1088/0022-3700/11/3/015. DOI

Smith DGA, et al. PSI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020;152:184108. doi: 10.1063/5.0006002. PubMed DOI PMC

Zamastil J, Benda J. Quantum Mechanics and Electrodynamics. Springer; 2017.

Andrews DL, Thirunamachandran T. On three-dimensional rotational averages. J. Chem. Phys. 1977;67:5026–5033. doi: 10.1063/1.434725. DOI

Mašín Z, et al. Electron correlations and pre-collision in the re-collision picture of high harmonic generation. J. Phys. B At. Mol. Opt. Phys. 2018;51:134006. doi: 10.1088/1361-6455/aac598. DOI

Chan WF, Cooper G, Brion CE. The electronic spectrum of carbon dioxide. Discrete and continuum photoabsorption oscillator strengths (6–203 eV) Chem. Phys. 1993;178:401–413. doi: 10.1016/0301-0104(93)85079-N. DOI

Homeier HHH, Steinborn EO. Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients. J. Mol. Struct. THEOCHEM. 1996;368:31–37. doi: 10.1016/S0166-1280(96)90531-X. DOI

Aymar M, Crance M. Two-photon ionisation of atomic hydrogen in the presence of one-photon ionisation. J. Phys. B At. Mol. Opt. Phys. 1980;13:L287–L292. doi: 10.1088/0022-3700/13/9/002. DOI

Cormier E, Bachau H, Zhang J. Discretization techniques applied to the study of multiphoton excitation of resonances in helium. J. Phys. B At. Mol. Opt. Phys. 1993;26:4449–4463. doi: 10.1088/0953-4075/26/23/016. DOI

Maquet A, Véniard V, Marian TA. The Coulomb Green’s function and multiphoton calculations. J. Phys. B At. Mol. Opt. Phys. 1998;31:3743–3764. doi: 10.1088/0953-4075/31/17/004. DOI

Higham NJ. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics; 2002.

Gao B, Starace A. Numerical methods for free-free radiative transition matrix elements. Comput. Phys. 1987;1:70. doi: 10.1063/1.4903436. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...