Anisotropy Parameters for Two-Color Photoionization Phases in Randomly Oriented Molecules: Theory and Experiment in Methane and Deuteromethane

. 2024 Mar 07 ; 128 (9) : 1685-1697. [epub] 20240223

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38394372

We present combined theoretical and experimental work investigating the angle-resolved phases of the photoionization process driven by a two-color field consisting of an attosecond pulse train and an infrared pulse in an ensemble of randomly oriented molecules. We derive a general form for the two-color photoelectron (and time-delay) angular distribution valid also in the case of chiral molecules and when relative polarizations of the photons contributing to the attosecond photoelectron interferometer differ. We show a comparison between the experimental data and theoretical predictions in an ensemble of methane and deuteromethane molecules, discussing the effect of nuclear dynamics on the photoionization phases. Finally, we demonstrate that the oscillating component and the phase of the two-color signal can be fitted by using complex asymmetry parameters, in perfect analogy to the atomic case.

Zobrazit více v PubMed

Krausz F.; Ivanov M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. 10.1103/RevModPhys.81.163. DOI

Calegari F.; Sansone G.; Stagira S.; Vozzi C.; Nisoli M. Advances in attosecond science. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 062001.10.1088/0953-4075/49/6/062001. DOI

Sansone G.; Pfeifer T.; Simeonidis K.; Kuleff A. I. Electron Correlation in Real Time. ChemPhysChem 2012, 13, 661–680. 10.1002/cphc.201100528. PubMed DOI

Isinger M.; Squibb R. J.; Busto D.; Zhong S.; Harth A.; Kroon D.; Nandi S.; Arnold C. L.; Miranda M.; Dahlström J. M.; et al. Photoionization in the time and frequency domain. Science 2017, 358, 893–896. 10.1126/science.aao7043. PubMed DOI

Nandi S.; Plésiat E.; Zhong S.; Palacios A.; Busto D.; Isinger M.; Neoričić L.; Arnold C. L.; Squibb R. J.; Feifel R.; et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 2020, 6, 7762–7793. 10.1126/sciadv.aba7762. PubMed DOI PMC

Ahmadi H.; Plésiat E.; Moioli M.; Frassetto F.; Poletto L.; Decleva P.; Schröter C. D.; Pfeifer T.; Moshammer R.; Palacios A.; et al. Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame. Nat. Commun. 2022, 13, 1242.10.1038/s41467-022-28783-x. PubMed DOI PMC

Vos J.; Cattaneo L.; Patchkovskii S.; Zimmermann T.; Cirelli C.; Lucchini M.; Kheifets A.; Landsman A. S.; Keller U. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science 2018, 360, 1326–1330. 10.1126/science.aao4731. PubMed DOI

Paul P. M.; Toma E. S.; Breger P.; Mullot G.; Auge F.; Balcou P.; Muller H. G.; Agostini P. Observation of a train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689–1692. 10.1126/science.1059413. PubMed DOI

Heuser S.; Galán Á. J.; Cirelli C.; Marante C.; Sabbar M.; Boge R.; Lucchini M.; Gallmann L.; Ivanov I.; Kheifets A. S.; et al. Angular dependence of photoemission time delay in helium. Phys. Rev. A 2016, 94, 63409.10.1103/PhysRevA.94.063409. DOI

Peschel J.; Busto D.; Plach M.; Bertolino M.; Hoflund M.; Maclot S.; Vinbladh J.; Wikmark H.; Zapata F.; Lindroth E.; et al. Attosecond dynamics of multi-channel single photon ionization. Nat. Commun. 2022, 13, 5205.10.1038/s41467-022-32780-5. PubMed DOI PMC

Han M.; Ji J.-B.; Balciunas T.; Ueda K.; Worner H. J. Attosecond circular-dichroism chronoscopy of electron vortices. Nat. Phys. 2022, 19, 230–236. 10.1038/s41567-022-01832-4. DOI

Biswas S.; Förg B.; Ortmann L.; Schötz J.; Schweinberger W.; Zimmermann T.; Pi L.; Baykusheva D.; Masood H. A.; Liontos I.; et al. Probing molecular environment through photoemission delays. Nat. Phys. 2020, 16, 778–783. 10.1038/s41567-020-0887-8. DOI

Heck S.; Baykusheva D.; Han M.; Ji J.-B.; Perry C.; Gong X.; Wörner H. J. Attosecond interferometry of shape resonances in the recoil frame of CF4. Sci. Adv. 2021, 7 (7), eabj812110.1126/sciadv.abj8121. PubMed DOI PMC

Saha S.; Vinbladh J.; Sörngard J.; Ljungdahl A.; Lindroth E. Angular anisotropy parameters for photoionization delays. Phys. Rev. A 2021, 104, 033108.10.1103/PhysRevA.104.033108. DOI

Reid K. L. Photoelectron Angular Distributions. Annu. Rev. Phys. Chem. 2003, 54, 397–424. 10.1146/annurev.physchem.54.011002.103814. PubMed DOI

Dörner R.; Mergel V.; Jagutzki O.; Spielberger L.; Ullrich J.; Moshammer R.; Schmidt-Böcking H. Cold Target Recoil Ion Momentum Spectroscopy: A ’momentum microscope’ to view atomic collision dynamics. Phys. Rep. 2000, 330, 95–192. 10.1016/S0370-1573(99)00109-X. DOI

Ullrich J.; Moshammer R.; Dorn A.; D rner R.; Schmidt L. P. H.; Schmidt-B cking H. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 2003, 66, 1463–1545. 10.1088/0034-4885/66/9/203. DOI

Ertel D.; Schmoll M.; Kellerer S.; Jäger A.; Weissenbilder R.; Moioli M.; Ahmadi H.; Busto D.; Makos I.; Frassetto F.; et al. Ultrastable, high-repetition-rate attosecond beamline for time-resolved XUV–IR coincidence spectroscopy. Rev. Sci. Instrum. 2023, 94, 073001.10.1063/5.0139496. PubMed DOI

Ahmadi H.; Kellerer S.; Ertel D.; Moioli M.; Reduzzi M.; Maroju P. K.; Jäger A.; Shah R. N.; Lutz J.; Frassetto F.; et al. Collinear setup for delay control in two-color attosecond measurements. Journal of Physics: Photonics 2020, 2, 024006.10.1088/2515-7647/ab823f. DOI

Chupka W. A. Mass-spectrometric study of the photoionization of methane. J. Chem. Phys. 1968, 48, 2337–2341. 10.1063/1.1669433. DOI

Field T. A.; Eland J. H. The fragmentation of CH4+ ions from photoionization between 12 and 40 eV. J. Electron Spectrosc. Relat. Phenom. 1995, 73, 209–216. 10.1016/0368-2048(94)02282-8. DOI

Latimer C. J.; Mackie R. A.; Sands A. M.; Kouchi N.; Dunn K. F. The dissociative photoionization of methane in the VUV. J. Phys. B At. Mol. Opt. Phys. 1999, 32, 2667–2676. 10.1088/0953-4075/32/11/314. DOI

Ertel D.Attosecond Coincidence Spectroscopy of Methane and Deuteromethane. Ph.D. Thesis, University of Freiburg, 2022.

Benda J.; Mašín Z. Multi-photon above threshold ionization of multi-electron atoms and molecules using the R-matrix approach. Sci. Rep. 2021, 11, 11686.10.1038/s41598-021-89733-z. PubMed DOI PMC

Mašín Z.; Benda J.; Gorfinkiel J. D.; Harvey A. G.; Tennyson J. UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. Comput. Phys. Commun. 2020, 249, 107092.10.1016/j.cpc.2019.107092. DOI

Ertel D.; Busto D.; Makos I.; Schmoll M.; Benda J.; Ahmadi H.; Moioli M.; Frassetto F.; Poletto L.; Schröter C. D.; et al. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. Science Advances 2023, 9, eadh774710.1126/sciadv.adh7747. PubMed DOI PMC

Jiang W.; Armstrong G. S. J.; Tong J.; Xu Y.; Zuo Z.; Qiang J.; Lu P.; Clarke D. D. A.; Benda J.; Fleischer A.; et al. Atomic partial wave meter by attosecond coincidence metrology. Nat. Commun. 2022, 13, 5072.10.1038/s41467-022-32753-8. PubMed DOI PMC

Cacelli I.; Carravetta V.; Rizzo A.; Moccia R. The Calculation of Photoionisation Cross Sections of Simple Polyatomic Molecules by L2 Methods. Phys. Rep. 1991, 205, 283–351. 10.1016/0370-1573(91)90041-J. DOI

Reid K. L.; Leahy D. J.; Zare R. N. Effect of breaking cylindrical symmetry on photoelectron angular distributions resulting from resonance-enhanced two-photon ionization. J. Chem. Phys. 1991, 95, 1746–1756. 10.1063/1.461023. DOI

Patchkovskii S.; Benda J.; Ertel D.; Busto D. Theory of nuclear motion in RABBITT spectra. Phys. Rev. A 2023, 107, 043105.10.1103/PhysRevA.107.043105. DOI

Gong X.; Plésiat t.; Palacios A.; Heck S.; Martín F.; Wörner H. J. Attosecond delays between dissociative and non-dissociative ionization of polyatomic molecules. Nat. Commun. 2023, 14, 4402.10.1038/s41467-023-40120-4. PubMed DOI PMC

Ritchie B. Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions. Phys. Rev. A 1976, 13, 1411–1415. 10.1103/PhysRevA.13.1411. DOI

Beaulieu S.; Comby A.; Descamps D.; Fabre B.; Garcia G. A.; Géneaux R.; Harvey A. G.; Légaré F.; Mašín Z.; Nahon L.; et al. Photoexcitation circular dichroism in chiral molecules. Nat. Phys. 2018, 14, 484–489. 10.1038/s41567-017-0038-z. DOI

Harvey A. G.; Mašín Z.; Smirnova O. General theory of photoexcitation induced photoelectron circular dichroism. J. Chem. Phys. 2018, 149, 064104.10.1063/1.5040476. PubMed DOI

Lehmann C. S.; Ram N. B.; Powis I.; Janssen M. H. M. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection. J. Chem. Phys. 2013, 139, 234307.10.1063/1.4844295. PubMed DOI

Sörngård J.; Dahlström J. M.; Lindroth E. Study of the possibilities with combinations of circularly and linearly polarized light for attosecond delay investigations. Journal of Physics B: Atomic, Molecular and Optical Physics 2020, 53, 134003.10.1088/1361-6455/ab84c6. DOI

Varshalovich D. A.; Moskalev A. N.; Khersonskii V. K.. Quantum Theory of Angular Momentum; World Scientific, 1988.

Demekhin P. V.; Lagutin B. M.; Petrov I. D. Theoretical study of angular-resolved two-photon ionization of H2. Phys. Rev. A 2012, 85, 023416.10.1103/PhysRevA.85.023416. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...