Anisotropy Parameters for Two-Color Photoionization Phases in Randomly Oriented Molecules: Theory and Experiment in Methane and Deuteromethane
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38394372
PubMed Central
PMC10926910
DOI
10.1021/acs.jpca.3c06759
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present combined theoretical and experimental work investigating the angle-resolved phases of the photoionization process driven by a two-color field consisting of an attosecond pulse train and an infrared pulse in an ensemble of randomly oriented molecules. We derive a general form for the two-color photoelectron (and time-delay) angular distribution valid also in the case of chiral molecules and when relative polarizations of the photons contributing to the attosecond photoelectron interferometer differ. We show a comparison between the experimental data and theoretical predictions in an ensemble of methane and deuteromethane molecules, discussing the effect of nuclear dynamics on the photoionization phases. Finally, we demonstrate that the oscillating component and the phase of the two-color signal can be fitted by using complex asymmetry parameters, in perfect analogy to the atomic case.
Department of Physics Lund University P O Box 118 SE 221 00 Lund Sweden
Department of Physics Stockholm University AlbaNova University Center SE 106 91 Stockholm Sweden
Istituto di Fotonica e Nanotecnologie CNR 20129 Milano Italy
Zobrazit více v PubMed
Krausz F.; Ivanov M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. 10.1103/RevModPhys.81.163. DOI
Calegari F.; Sansone G.; Stagira S.; Vozzi C.; Nisoli M. Advances in attosecond science. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 062001.10.1088/0953-4075/49/6/062001. DOI
Sansone G.; Pfeifer T.; Simeonidis K.; Kuleff A. I. Electron Correlation in Real Time. ChemPhysChem 2012, 13, 661–680. 10.1002/cphc.201100528. PubMed DOI
Isinger M.; Squibb R. J.; Busto D.; Zhong S.; Harth A.; Kroon D.; Nandi S.; Arnold C. L.; Miranda M.; Dahlström J. M.; et al. Photoionization in the time and frequency domain. Science 2017, 358, 893–896. 10.1126/science.aao7043. PubMed DOI
Nandi S.; Plésiat E.; Zhong S.; Palacios A.; Busto D.; Isinger M.; Neoričić L.; Arnold C. L.; Squibb R. J.; Feifel R.; et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 2020, 6, 7762–7793. 10.1126/sciadv.aba7762. PubMed DOI PMC
Ahmadi H.; Plésiat E.; Moioli M.; Frassetto F.; Poletto L.; Decleva P.; Schröter C. D.; Pfeifer T.; Moshammer R.; Palacios A.; et al. Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame. Nat. Commun. 2022, 13, 1242.10.1038/s41467-022-28783-x. PubMed DOI PMC
Vos J.; Cattaneo L.; Patchkovskii S.; Zimmermann T.; Cirelli C.; Lucchini M.; Kheifets A.; Landsman A. S.; Keller U. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science 2018, 360, 1326–1330. 10.1126/science.aao4731. PubMed DOI
Paul P. M.; Toma E. S.; Breger P.; Mullot G.; Auge F.; Balcou P.; Muller H. G.; Agostini P. Observation of a train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689–1692. 10.1126/science.1059413. PubMed DOI
Heuser S.; Galán Á. J.; Cirelli C.; Marante C.; Sabbar M.; Boge R.; Lucchini M.; Gallmann L.; Ivanov I.; Kheifets A. S.; et al. Angular dependence of photoemission time delay in helium. Phys. Rev. A 2016, 94, 63409.10.1103/PhysRevA.94.063409. DOI
Peschel J.; Busto D.; Plach M.; Bertolino M.; Hoflund M.; Maclot S.; Vinbladh J.; Wikmark H.; Zapata F.; Lindroth E.; et al. Attosecond dynamics of multi-channel single photon ionization. Nat. Commun. 2022, 13, 5205.10.1038/s41467-022-32780-5. PubMed DOI PMC
Han M.; Ji J.-B.; Balciunas T.; Ueda K.; Worner H. J. Attosecond circular-dichroism chronoscopy of electron vortices. Nat. Phys. 2022, 19, 230–236. 10.1038/s41567-022-01832-4. DOI
Biswas S.; Förg B.; Ortmann L.; Schötz J.; Schweinberger W.; Zimmermann T.; Pi L.; Baykusheva D.; Masood H. A.; Liontos I.; et al. Probing molecular environment through photoemission delays. Nat. Phys. 2020, 16, 778–783. 10.1038/s41567-020-0887-8. DOI
Heck S.; Baykusheva D.; Han M.; Ji J.-B.; Perry C.; Gong X.; Wörner H. J. Attosecond interferometry of shape resonances in the recoil frame of CF4. Sci. Adv. 2021, 7 (7), eabj812110.1126/sciadv.abj8121. PubMed DOI PMC
Saha S.; Vinbladh J.; Sörngard J.; Ljungdahl A.; Lindroth E. Angular anisotropy parameters for photoionization delays. Phys. Rev. A 2021, 104, 033108.10.1103/PhysRevA.104.033108. DOI
Reid K. L. Photoelectron Angular Distributions. Annu. Rev. Phys. Chem. 2003, 54, 397–424. 10.1146/annurev.physchem.54.011002.103814. PubMed DOI
Dörner R.; Mergel V.; Jagutzki O.; Spielberger L.; Ullrich J.; Moshammer R.; Schmidt-Böcking H. Cold Target Recoil Ion Momentum Spectroscopy: A ’momentum microscope’ to view atomic collision dynamics. Phys. Rep. 2000, 330, 95–192. 10.1016/S0370-1573(99)00109-X. DOI
Ullrich J.; Moshammer R.; Dorn A.; D rner R.; Schmidt L. P. H.; Schmidt-B cking H. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 2003, 66, 1463–1545. 10.1088/0034-4885/66/9/203. DOI
Ertel D.; Schmoll M.; Kellerer S.; Jäger A.; Weissenbilder R.; Moioli M.; Ahmadi H.; Busto D.; Makos I.; Frassetto F.; et al. Ultrastable, high-repetition-rate attosecond beamline for time-resolved XUV–IR coincidence spectroscopy. Rev. Sci. Instrum. 2023, 94, 073001.10.1063/5.0139496. PubMed DOI
Ahmadi H.; Kellerer S.; Ertel D.; Moioli M.; Reduzzi M.; Maroju P. K.; Jäger A.; Shah R. N.; Lutz J.; Frassetto F.; et al. Collinear setup for delay control in two-color attosecond measurements. Journal of Physics: Photonics 2020, 2, 024006.10.1088/2515-7647/ab823f. DOI
Chupka W. A. Mass-spectrometric study of the photoionization of methane. J. Chem. Phys. 1968, 48, 2337–2341. 10.1063/1.1669433. DOI
Field T. A.; Eland J. H. The fragmentation of CH4+ ions from photoionization between 12 and 40 eV. J. Electron Spectrosc. Relat. Phenom. 1995, 73, 209–216. 10.1016/0368-2048(94)02282-8. DOI
Latimer C. J.; Mackie R. A.; Sands A. M.; Kouchi N.; Dunn K. F. The dissociative photoionization of methane in the VUV. J. Phys. B At. Mol. Opt. Phys. 1999, 32, 2667–2676. 10.1088/0953-4075/32/11/314. DOI
Ertel D.Attosecond Coincidence Spectroscopy of Methane and Deuteromethane. Ph.D. Thesis, University of Freiburg, 2022.
Benda J.; Mašín Z. Multi-photon above threshold ionization of multi-electron atoms and molecules using the R-matrix approach. Sci. Rep. 2021, 11, 11686.10.1038/s41598-021-89733-z. PubMed DOI PMC
Mašín Z.; Benda J.; Gorfinkiel J. D.; Harvey A. G.; Tennyson J. UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. Comput. Phys. Commun. 2020, 249, 107092.10.1016/j.cpc.2019.107092. DOI
Ertel D.; Busto D.; Makos I.; Schmoll M.; Benda J.; Ahmadi H.; Moioli M.; Frassetto F.; Poletto L.; Schröter C. D.; et al. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. Science Advances 2023, 9, eadh774710.1126/sciadv.adh7747. PubMed DOI PMC
Jiang W.; Armstrong G. S. J.; Tong J.; Xu Y.; Zuo Z.; Qiang J.; Lu P.; Clarke D. D. A.; Benda J.; Fleischer A.; et al. Atomic partial wave meter by attosecond coincidence metrology. Nat. Commun. 2022, 13, 5072.10.1038/s41467-022-32753-8. PubMed DOI PMC
Cacelli I.; Carravetta V.; Rizzo A.; Moccia R. The Calculation of Photoionisation Cross Sections of Simple Polyatomic Molecules by L2 Methods. Phys. Rep. 1991, 205, 283–351. 10.1016/0370-1573(91)90041-J. DOI
Reid K. L.; Leahy D. J.; Zare R. N. Effect of breaking cylindrical symmetry on photoelectron angular distributions resulting from resonance-enhanced two-photon ionization. J. Chem. Phys. 1991, 95, 1746–1756. 10.1063/1.461023. DOI
Patchkovskii S.; Benda J.; Ertel D.; Busto D. Theory of nuclear motion in RABBITT spectra. Phys. Rev. A 2023, 107, 043105.10.1103/PhysRevA.107.043105. DOI
Gong X.; Plésiat t.; Palacios A.; Heck S.; Martín F.; Wörner H. J. Attosecond delays between dissociative and non-dissociative ionization of polyatomic molecules. Nat. Commun. 2023, 14, 4402.10.1038/s41467-023-40120-4. PubMed DOI PMC
Ritchie B. Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions. Phys. Rev. A 1976, 13, 1411–1415. 10.1103/PhysRevA.13.1411. DOI
Beaulieu S.; Comby A.; Descamps D.; Fabre B.; Garcia G. A.; Géneaux R.; Harvey A. G.; Légaré F.; Mašín Z.; Nahon L.; et al. Photoexcitation circular dichroism in chiral molecules. Nat. Phys. 2018, 14, 484–489. 10.1038/s41567-017-0038-z. DOI
Harvey A. G.; Mašín Z.; Smirnova O. General theory of photoexcitation induced photoelectron circular dichroism. J. Chem. Phys. 2018, 149, 064104.10.1063/1.5040476. PubMed DOI
Lehmann C. S.; Ram N. B.; Powis I.; Janssen M. H. M. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection. J. Chem. Phys. 2013, 139, 234307.10.1063/1.4844295. PubMed DOI
Sörngård J.; Dahlström J. M.; Lindroth E. Study of the possibilities with combinations of circularly and linearly polarized light for attosecond delay investigations. Journal of Physics B: Atomic, Molecular and Optical Physics 2020, 53, 134003.10.1088/1361-6455/ab84c6. DOI
Varshalovich D. A.; Moskalev A. N.; Khersonskii V. K.. Quantum Theory of Angular Momentum; World Scientific, 1988.
Demekhin P. V.; Lagutin B. M.; Petrov I. D. Theoretical study of angular-resolved two-photon ionization of H2. Phys. Rev. A 2012, 85, 023416.10.1103/PhysRevA.85.023416. DOI