Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22679519
PubMed Central
PMC3367980
DOI
10.1371/journal.pntd.0001667
PII: PNTD-D-11-01135
Knihovny.cz E-zdroje
- MeSH
- cytokiny krev MeSH
- interakce hostitele a patogenu * MeSH
- játra parazitologie MeSH
- kůže parazitologie patologie MeSH
- Leishmania major imunologie patogenita MeSH
- Leishmania tropica imunologie patogenita MeSH
- leishmanióza kožní genetika imunologie parazitologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- náchylnost k nemoci * MeSH
- parazitární zátěž MeSH
- sexuální faktory MeSH
- slezina parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- cytokiny MeSH
BACKGROUND: Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. METHODS: We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. PRINCIPAL FINDINGS: Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. CONCLUSION: Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.
Zobrazit více v PubMed
Rittig MG, Bogdan C. Leishmania-host-cell interaction: complexities and alternative views. Parasitol Today. 2000;16:292–297. PubMed
Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol. 1995;13:151–177. PubMed
McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev. 2004;201:206–224. PubMed
Farrell JP. Leishmania. Boston, Dordrecht, London: Kluwer Academic Publishers; 2002. 193
Kobets T, Grekov I, Lipoldová M. Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem. 2012;19:1443–1474. PubMed
Herwaldt BL. Leishmaniasis. Lancet. 1999;354:1191–1199. PubMed
Lipoldová M, Demant P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet. 2006;7:294–305. PubMed
Jacobson RL. Leishmania tropica (Kinetoplastida: Trypanosomatidae) - a perplexing parasite. Folia Parasit. 2003;50:241–250. PubMed
Svobodova M, Votypka J, Peckova J, Dvorak V, Nasereddin A, et al. Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, Northern Israel. Emerg Infect Dis. 2006;12:1860–1868. PubMed PMC
Magill AJ, Grögl M, Gasser RA, Jr, Sun W, Oster CN. Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm. N Engl J Med. 1993;328:1383–1387. PubMed
Sacks DL, Kenney RT, Kreutzer RD, Jaffe CL, Gupta AK, et al. Indian kala-azar caused by Leishmania tropica. Lancet. 1995;345:959–961. PubMed
Alborzi A, Pouladfar GR, Fakhar M, Motazedian MH, Hatam GR, et al. Isolation of Leishmania tropica from a patient with visceral leishmaniasis and disseminated cutaneous leishmaniasis, southern Iran. Am J Trop Med Hyg. 2008;79:435–437. PubMed
Lira R, Méndez S, Carrera L, Jaffe C, Neva F, et al. Leishmania tropica: the identification and purification of metacyclic promastigotes and use in establishing mouse and hamster models of cutaneous and visceral disease. Exp Parasitol. 1998;89:331–342. PubMed
Girginkardeşler N, Balcioğlu IC, Yereli K, Özbilgin A, Özbel Y, et al. Cutaneous leishmaniasis infection in BALB/c mice using a Leishmania tropica strain isolated from Turkey. J Parasitol. 2001;87:1177–1178. PubMed
Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2:845–858. PubMed
Anderson CF, Lira R, Kamhawi S, Belkaid Y, Wynn TA, et al. IL-10 and TGF-beta control the establishment of persistent and transmissible infections produced by Leishmania tropica in C57BL/6 mice. J Immunol. 2008;180:4090–4097. PubMed
Demant P, Hart AAM. Recombinant congenic strains – a new tool for analysing genetic traits determined by more than one gene. Immunogenetics. 1986;24:416–422. PubMed
Demant P, Lipoldová M, Svobodová M. Resistance to Leishmania major in mice. Science. 1996;274:1392–1393. PubMed
Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, et al. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 2000;1:200–206. PubMed
Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AAM, et al. Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun. 2003;71:2041–2046. PubMed PMC
Havelková H, Badalová J, Svobodová M, Vojtíšková J, Kurey I, et al. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. 2006;7:220–233. PubMed
Kurey I, Kobets T, Havelková H, Slapničková M, Quan L, et al. Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics. 2009;61:619–633. PubMed PMC
Stassen AP, Groot PC, Eppig JT, Demant P. Genetic composition of the recombinant congenic strains. Mamm Genome. 1996;7:55–58. PubMed
Grekov I, Svobodová M, Nohýnková E, Lipoldová M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods. 2011;87:273–277. PubMed
Rogers ME, Ilg T, Nikolaev AV, Ferguson MAJ, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. 2004;430:463–467. PubMed PMC
Titus RG, Marchand M, Boon T, Louis JA. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol. 1985;7:545–555. PubMed
Kobets T, Badalová J, Grekov I, Havelková H, Svobodová M, et al. Leishmania parasite detection and quantification using PCR-ELISA. Nat Protoc. 2010;5:1074–1080. PubMed
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, et al. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics. 2002;54:174–183. PubMed
Howard JG, Hale C, Chan-Liew WL. Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol. 1980;2:303–314. PubMed
Longley R, Smith C, Fortin A, Berghout J, McMorran B, et al. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome. 2011;22:32–42. PubMed
Lipoldová M, Kosařová M, Zajícová A, Holáň V, Hart AA, et al. Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics. 1995;41:301–311. PubMed
Holáň V, Lipoldová M, Demant P. Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics. 1996;44:27–35. PubMed
Havelková H, Badalová J, Demant P, Lipoldová M. A new type of genetic regulation of allogeneic response. A novel locus on mouse chromosome 4, Alan2 controls MLC reactivity to three different alloantigens: C57BL/10, BALB/c and CBA. Genes Immun. 2000;1:483–487. PubMed
Lipoldová M, Havelková H, Badalová J, Demant P. Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility. Int J Cancer. 2005;114:394–399. PubMed
Havelková H, Holáň V, Kárník I, Lipoldová M. Mouse model for analysis of non-MHC genes that influence allogeneic response: recombinant congenic strains of OcB/Dem series that carry identical H2 locus. Cent Eur J Biol. 2006;1:16–28.
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, et al. Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis. 2011;5:e1173. PubMed PMC
Shockley KR, Churchill GA. Gene expression analysis of mouse chromosome substitution strains. Mamm Genome. 2006;17:598–614. PubMed
Min-Oo G, Fortin A, Tam MF, Nantel A, Stevenson MM, et al. Pyruvate kinase deficiency in mice protects against malaria. Nat Genet. 2003;35:357–362. PubMed
Alexander J. Sex differences and cross-immunity in DBA/2 mice infected with L. mexicana and L. major. Parasitology. 1988;96(Pt 2):297–302. PubMed
Mock BA, Nacy CA. Hormonal modulation of sex differences in resistance to Leishmania major systemic infections. Infect Immun. 1988;56:3316–3319. PubMed PMC
Giannini MS. Sex-influenced response in the pathogenesis of cutaneous leishmaniasis in mice. Parasite Immunol. 1986;8:31–37. PubMed
Alexander J, Irving K, Snider H, Satoskar A. Klein SL, Roberts CW, editors. Sex hormones of host responses against parasites. Sex hormons and immunity to infection. 2010. pp. 147–186. Springer Heildelberg, Dordrecht, London, New York, 2010.
Sakthianandeswaren A, Curtis JM, Elso C, Kumar B, Baldwin TM, et al. Fine mapping of Leishmania major susceptibility locus lmr2 and evidence of a role for Fli1 in disease and wound healing. Infect Immun. 2010;78:2734–2744. PubMed PMC
Lee AH, Hong JH, Seo YS. Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochem J. 2000;350 Pt 1:131–138. PubMed PMC
Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007;25:787–820. PubMed
Teixeira JM, Teixeira CR, Andrade BB, Barral-Netto M, Barral A. Chemokines in host-parasite interactions in leishmaniasis. Trends Parasitol. 2006;22:32–40. PubMed
Oghumu S, Lezama-Davila CM, Isaac-Marquez AP, Satoskar AR. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol. 2010;126:389–396. PubMed PMC
Battacharyya S, Ghosh S, Dasgupta B, Mazumder D, Roy S, et al. Chemokine-induced leishmanicidal activity in murine macrophages via generation of nitric oxide. J Infect Dis. 2002;185:1704–1708. PubMed
Brandonisio O, Panaro MA, Fumarola L, Sisto M, Leogrande D, et al. Macrophage chemotactic protein-1 and macrophage inflammatory protein-1α induce nitric oxide release and enchance parasite killing in Leishmania infantum-infected macrophages. Clin Exp Med. 2002;2:125–129. PubMed
Da Costa Santiago H, Ferreira Oliveira C, Santiago L, Oliveira Ferraz F, de Glória de Souza D, et al. Involvement of chemokine RANTES (CCL5) in resistance to experimental infection with Leishmania major. Infect Immun. 2004;72:4918–4923. PubMed PMC
Ritter U, Moll H, Laskay T, Brocker E, Velazco O, et al. Differential expression of chemokines in patients with localized and diffuse cutaneous American leishmaniasis. J Infect Dis. 1996;173:699–709. PubMed
Johnson J, Suzuki Y, Mack D, Mui E, Estes R, et al. Genetic analysis of influences on survival following Toxoplasma gondii infection. Int J Parasitol. 2002;32:179–185. PubMed
Masocha W, Amin DN, Kristensson K, Rottenberg ME. Differential invasion of Trypanosoma brucei brucei and lymphocytes into the brain of C57BL/6 and 129Sv/Ev mice. Scand J Immunol. 2008;68:484–491. PubMed
Rathkolb B, Noyes HA, Brass A, Dark P, Fuchs H, et al. Clinical chemistry of congenic mice with quantitative trait loci for predicted responses to Trypanosoma congolense infection. Infect Immun. 2009;77:3948–3957. PubMed PMC
Helegbe GK, Yanagi T, Senba M, Huy NT, Shuaibu MN, et al. Histopathological studies in two strains of semi-immune mice infected with Plasmodium berghei ANKA after chronic exposure. Parasitol Res. 2011;108:807–814. PubMed
Gene-Specific Sex Effects on Susceptibility to Infectious Diseases
Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse
Genetic Regulation of Guanylate-Binding Proteins 2b and 5 during Leishmaniasis in Mice
Gene-specific sex effects on eosinophil infiltration in leishmaniasis
Mapping the genes for susceptibility and response to Leishmania tropica in mouse