Mapping the genes for susceptibility and response to Leishmania tropica in mouse

. 2013 ; 7 (7) : e2282. [epub] 20130711

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23875032

BACKGROUND: L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology. METHODS: We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses. PRINCIPAL FINDINGS: We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology. CONCLUSION: We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice.

Zobrazit více v PubMed

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3365071&tool=pmcentrez&rendertype=abstract. PubMed PMC

Ready PD (2010) Leishmaniasis emergence in Europe. Euro Surveill 15: 19505 Available: http://www.ncbi.nlm.nih.gov/pubmed/20403308. PubMed

Kobets T, Grekov I, Lipoldová M (2012) Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem 19: 1443–1474 Available: http://www.ncbi.nlm.nih.gov/pubmed/22360481. PubMed

Lipoldová M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7: 294–305 Available: http://www.ncbi.nlm.nih.gov/pubmed/16543933. PubMed

Terrazas CA, Terrazas LI, Gómez-García L (2010) Modulation of dendritic cell responses by parasites: a common strategy to survive. J Biomed Biotechnol 2010: 357106 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2829630&tool=pmcentrez&rendertype=abstract. PubMed PMC

Bogdan C (2008) Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cell Microbiol 10: 1221–1234 Available: http://www.ncbi.nlm.nih.gov/pubmed/18363880. PubMed

McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201: 206–224 Available: http://www.ncbi.nlm.nih.gov/pubmed/15361243. PubMed

Herwaldt BL (1999) Leishmaniasis. Lancet 354: 1191–1199 Available: http://www.ncbi.nlm.nih.gov/pubmed/10513726. PubMed

Frade AF, Oliveira LC de, Costa DL, Costa CHN, Aquino D, et al. (2011) TGFB1 and IL8 gene polymorphisms and susceptibility to visceral leishmaniasis. Infection, genetics and evolution: Infect Genet Evol 11: 912–916 Available: http://www.ncbi.nlm.nih.gov/pubmed/21376140. PubMed

Fernández-Figueroa EA, Rangel-Escareño C, Espinosa-Mateos V, Carrillo-Sánchez K, Salaiza-Suazo N, et al. (2012) Disease severity in patients infected with Leishmania mexicana relates to IL-1β. PLoS Negl Trop Dis 6: e1533 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3358333&tool=pmcentrez&rendertype=abstract. PubMed PMC

Castellucci L, Menezes E, Oliveira J, Magalhaes A, Guimaraes LH, et al. (2006) IL6 −174 G/C promoter polymorphism influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. J Infect Dis 194: 519–527 Available: http://www.ncbi.nlm.nih.gov/pubmed/16845637. PubMed

Ramasawmy R, Menezes E, Magalhães A, Oliveira J, Castellucci L, et al. (2010) The −2518 bp promoter polymorphism at CCL2/MCP1 influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. Infect Genet Evol 10: 607–613 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2878927&tool=pmcentrez&rendertype=abstract. PubMed PMC

Castellucci L, Jamieson SE, Miller EN, Menezes E, Oliveira J, et al. (2010) CXCR1 and SLC11A1 polymorphisms affect susceptibility to cutaneous leishmaniasis in Brazil: a case-control and family-based study. BMC Med Genet 11: 10 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2823618&tool=pmcentrez&rendertype=abstract. PubMed PMC

Mehrotra S, Fakiola M, Oommen J, Jamieson SE, Mishra A, et al. (2011) Genetic and functional evaluation of the role of CXCR1 and CXCR2 in susceptibility to visceral leishmaniasis in north-east India. BMC Med Genet 12: 162 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3260103&tool=pmcentrez&rendertype=abstract. PubMed PMC

Assaf A, Hoang TV, Faik I, Aebischer T, Kremsner PG, et al. (2012) Genetic evidence of functional ficolin-2 haplotype as susceptibility factor in cutaneous leishmaniasis. PloS One 7: e34113 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3311577&tool=pmcentrez&rendertype=abstract. PubMed PMC

Alonso DP, Ferreira AFB, Ribolla PEM, de Miranda Santos IKF, do Socorro Pires e Cruz M, et al. (2007) Genotypes of the mannan-binding lectin gene and susceptibility to visceral leishmaniasis and clinical complications. J Infect Dis 195: 1212–1217 Available: http://www.ncbi.nlm.nih.gov/pubmed/17357060. PubMed

Bucheton B, Abel L, El-Safi S, Kheir MM, Pavek S, et al. (2003) A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am J Hum Genet 73: 1052–1060 Available: http://www.gpubmedcentral.nih.gov/articlerender.fcgi?artid=1180485&tool=pmcentrez&rendertype=abstract. PubMed PMC

Bucheton B, Argiro L, Chevillard C, Marquet S, Kheir MM, et al. (2007) Identification of a novel G245R polymorphism in the IL-2 receptor beta membrane proximal domain associated with human visceral leishmaniasis. Genes Immun 8: 79–83 Available: http://www.ncbi.nlm.nih.gov/pubmed/17108990. PubMed

Fakiola M, Miller EN, Fadl M, Mohamed HS, Jamieson SE, et al. (2011) Genetic and functional evidence implicating DLL1 as the gene that influences susceptibility to visceral leishmaniasis at chromosome 6q27. J Infect Dis 204: 467–477 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3132144&tool=pmcentrez&rendertype=abstract. PubMed PMC

Maekawa Y, Tsukumo S, Chiba S, Hirai H, Hayashi Y, et al. (2003) Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19: 549–559 Available: http://www.ncbi.nlm.nih.gov/pubmed/14563319. PubMed

Fakiola M, Strange A, Cordell HJ, Miller EN, Pirinen M, et al. (2013) Common variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nat Genet 45: 208–213 Available: http://www.ncbi.nlm.nih.gov/pubmed/23291585. PubMed PMC

Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg . Cell 73: 469–485 Available: http://www.ncbi.nlm.nih.gov/pubmed/8490962. PubMed

Sakthianandeswaren A, Curtis JM, Elso C, Kumar B, Baldwin TM, et al. (2010) Fine mapping of Leishmania major susceptibility Locus lmr2 and evidence of a role for Fli1 in disease and wound healing. Infect Immun 78: 2734–2744 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876540&tool=pmcentrez&rendertype=abstract. PubMed PMC

Bucheton B, Abel L, Kheir MM, Mirgani A, El-Safi SH, et al. (2003) Genetic control of visceral leishmaniasis in a Sudanese population: candidate gene testing indicates a linkage to the NRAMP1 region. Genes Immun 4: 104–109 Available: http://www.ncbi.nlm.nih.gov/pubmed/12618857. PubMed

Castellucci L, Jamieson SE, Miller EN, de Almeida LF, Oliveira J, et al. (2011) FLI1 polymorphism affects susceptibility to cutaneous leishmaniasis in Brazil. Genes Immun 12: 589–594 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3297968&tool=pmcentrez&rendertype=abstract. PubMed PMC

Fortier A, Min-Oo G, Forbes J, Lam-Yuk-Tseung S, Gros P (2005) Single gene effects in mouse models of host: pathogen interactions. J Leukoc Biol 77: 868–877 Available: http://www.ncbi.nlm.nih.gov/pubmed/15653750. PubMed

Stober CB, Brode S, White JK, Popoff J-F, Blackwell JM (2007) Slc11a1, formerly Nramp1, is expressed in dendritic cells and influences major histocompatibility complex class II expression and antigen-presenting cell function. Infect Immun 75: 5059–5067 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2044529&tool=pmcentrez&rendertype=abstract. PubMed PMC

Malo D, Vogan K, Vidal S, Hu J, Cellier M, et al. (1994) Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23: 51–61 Available: http://www.ncbi.nlm.nih.gov/pubmed/7829102. PubMed

Perou CM, Moore KJ, Nagle DL, Misumi DJ, Woolf EA, et al. (1996) Identification of the murine beige gene by YAC complementation and positional cloning. Nat Genet 13: 303–308 Available: http://www.ncbi.nlm.nih.gov/pubmed/8673129. PubMed

Sans-Fons G, Yeramian A, Pereira-Lopes S, Santamaría-Babi L, Modolell M, et al. (2013) Arginine transport is impaired in C57BL/6 mouse macrophages as a result of a deletion in the promoter of slc7a2 (CAT2) and Leishmania infection is reduced. J Infect Dis 207(11): 1684–93 Available: http://www.ncbi.nlm.nih.gov/pubmed/23460752. PubMed

Kirkpatrick CE, Farrell JP (1982) Leishmaniasis in beige mice. Infect Immun 38: 1208–1216 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=347877&tool=pmcentrez&rendertype=abstract. PubMed PMC

Jacobson RL (2003) Leishmania tropica (Kinetoplastida: Trypanosomatidae)–a perplexing parasite. Folia Parasitol 50: 241–250 Available: http://www.ncbi.nlm.nih.gov/pubmed/14971592. PubMed

Magill AJ, Grögl M, Gasser RA, Sun W, Oster CN (1993) Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm. N Engl J Med 328: 1383–1387 Available: http://www.ncbi.nlm.nih.gov/pubmed/8292114. PubMed

Mebrahtu Y, Lawyer P, Githure J, Were JB, Muigai R, et al. (1989) Visceral leishmaniasis unresponsive to pentostam caused by Leishmania tropica in Kenya. Am J Trop Med Hyg 41: 289–294 Available: http://www.ncbi.nlm.nih.gov/pubmed/2552850. PubMed

Sacks DL, Kenney RT, Kreutzer RD, Jaffe CL, Gupta AK, et al. (1995) Indian kala-azar caused by Leishmania tropica . Lancet 345: 959–961 Available: http://www.ncbi.nlm.nih.gov/pubmed/7715298. PubMed

Khanra S, Datta S, Mondal D, Saha P, Bandopadhyay SK, et al. (2012) RFLPs of ITS, ITS1 and hsp70 amplicons and sequencing of ITS1 of recent clinical isolates of Kala-azar from India and Bangladesh confirms the association of L. tropica with the disease. Acta Trop 124: 229–234 Available: http://www.ncbi.nlm.nih.gov/pubmed/22960646. PubMed

Alborzi A, Rasouli M, Shamsizadeh A (2006) Leishmania tropica-isolated patient with visceral leishmaniasis in southern Iran. Am J Trop Med Hyg 74: 306–307 Available: http://www.ncbi.nlm.nih.gov/pubmed/16474088. PubMed

Alborzi A, Pouladfar GR, Fakhar M, Motazedian MH, Hatam GR, et al. (2008) Isolation of Leishmania tropica from a patient with visceral leishmaniasis and disseminated cutaneous leishmaniasis, southern Iran. Am J Trop Med Hyg 79: 435–437 Available: http://www.ncbi.nlm.nih.gov/pubmed/18784238. PubMed

Shirian S, Oryan A, Hatam G-R, Daneshbod K, Daneshbod Y (2012) Molecular diagnosis and species identification of mucosal leishmaniasis in Iran and correlation with cytological findings. Acta Cytol 56: 304–309 Available: http://www.ncbi.nlm.nih.gov/pubmed/22555534. PubMed

Lira R, Méndez S, Carrera L, Jaffe C, Neva F, et al. (1998) Leishmania tropica: the identification and purification of metacyclic promastigotes and use in establishing mouse and hamster models of cutaneous and visceral disease. Exp Parasitol 89: 331–342 Available: http://www.ncbi.nlm.nih.gov/pubmed/9676711. PubMed

Girginkardeşler N, Balcioğlu IC, Yereli K, Ozbilgin A, Ozbel Y (2001) Cutaneous leishmaniasis infection in Balb/c mice using a Leishmania tropica strain isolated from Turkey. J Parasitol 87: 1177–1178 Available: http://www.ncbi.nlm.nih.gov/pubmed/11695390. PubMed

Anderson CF, Lira R, Kamhawi S, Belkaid Y, Wynn TA, et al. (2008) IL-10 and TGF-beta control the establishment of persistent and transmissible infections produced by Leishmania tropica in C57BL/6 mice. J Immunol 180: 4090–4097 Available: http://www.ncbi.nlm.nih.gov/pubmed/18322219. PubMed

Demant P (2003) Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 4: 721–734 Available: http://www.ncbi.nlm.nih.gov/pubmed/12951573. PubMed

Demant P, Lipoldová M, Svobodová M (1996) Resistance to Leishmania major in mice. Science (New York, NY) 274: 1392 Available: http://www.ncbi.nlm.nih.gov/pubmed/17772041. PubMed

Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, et al. (2002) Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54: 174–183 Available: http://www.ncbi.nlm.nih.gov/pubmed/12073146. PubMed

Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, et al. (2012) Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis 6: e1667 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3367980&tool=pmcentrez&rendertype=abstract. PubMed PMC

Démant P, Hart AA (1986) Recombinant congenic strains - a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24: 416–422 Available: http://www.ncbi.nlm.nih.gov/pubmed/3793154. PubMed

Stassen AP, Groot PC, Eppig JT, Demant P (1996) Genetic composition of the recombinant congenic strains. Mamm Genome 7: 55–58 Available: http://www.ncbi.nlm.nih.gov/pubmed/8903730. PubMed

Grekov I, Svobodová M, Nohýnková E, Lipoldová M (2011) Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods 87: 273–277 Available: http://www.ncbi.nlm.nih.gov/pubmed/21889549. PubMed

Rogers ME, Ilg T, Nikolaev AV, Ferguson MAJ, Bates PA (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430: 463–467 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2835460&tool=pmcentrez&rendertype=abstract. PubMed PMC

Kobets T, Badalová J, Grekov I, Havelková H, Svobodová M, et al. (2010) Leishmania parasite detection and quantification using PCR-ELISA. Nat Prot 5: 1074–1080 Available: http://www.ncbi.nlm.nih.gov/pubmed/20539283. PubMed

Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, et al. (1991) Simplified mammalian DNA isolation procedure. Nucl Acids Res 19: 4293 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=328579&tool=pmcentrez&rendertype=abstract. PubMed PMC

Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, et al. (2011) Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis 5: e1173 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3110168&tool=pmcentrez&rendertype=abstract. PubMed PMC

Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265: 2037–2048 Available: http://www.ncbi.nlm.nih.gov/pubmed/8091226. PubMed

Nascimento MS, Albuquerque TD, Do-Valle-Matta MA, Caldas IS, Diniz LF, et al. (2013) Naturally Leishmania infantum-infected dogs display an overall impairment of chemokine and chemokine receptor expression during visceral leishmaniasis. Vet Immunol Immunopathol 153 ((3–4)): 202–8 Available: http://www.sciencedirect.com/science/article/pii/S0165242713000871. PubMed

Machado PR, Rosa ME, Costa D, Mignac M, Silva JS, et al. (2011) Reappraisal of the immunopathogenesis of disseminated leishmaniasis: in situ and systemic immune response. Trans R Soc Trop Med Hyg 105: 438–444 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3157292&tool=pmcentrez&rendertype=abstract. PubMed PMC

Menezes-Souza D, Guerra-Sá R, Carneiro CM, Vitoriano-Souza J, Giunchetti RC, et al. (2012) Higher expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 chemokines in the skin associated with parasite density in canine visceral leishmaniasis. PLoS Negl Trop Dis 6: e1566 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3323520&tool=pmcentrez&rendertype=abstract. PubMed PMC

Katzman SD, Fowell DJ (2008) Pathogen-imposed skewing of mouse chemokine and cytokine expression at the infected tissue site. J Clin Invest 118: 801–811 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2176190&tool=pmcentrez&rendertype=abstract. PubMed PMC

Bimal S, Sinha S, Singh SK, Narayan S, Kumar V, et al. (2012) Leishmania donovani: CD2 biased immune response skews the SAG mediated therapy for a predominant Th1 response in experimental infection. Exp Parasitol 131: 274–282 Available: http://www.ncbi.nlm.nih.gov/pubmed/22580024. PubMed

Portillo J-AC, Feliciano LM, Okenka G, Heinzel F, Subauste MC, et al. (2012) CD40 and tumour necrosis factor-α co-operate to up-regulate inducuble nitric oxide synthase expression in macrophages. Immunology 135: 140–150 Available: http://www.ncbi.nlm.nih.gov/pubmed/22044243. PubMed PMC

Kedzierski L, Curtis JM, Doherty PC, Handman E, Kedzierska K (2008) Decreased IL-10 and IL-13 production and increased CD44hi T cell recruitment contribute to Leishmania major immunity induced by non-persistent parasites. Eur J Immunol 38: 3090–3100 Available: http://www.ncbi.nlm.nih.gov/pubmed/18924210. PubMed

Kamir D, Zierow S, Leng L, Cho Y, Diaz Y, et al. (2008) A Leishmania ortholog of macrophage migration inhibitory factor modulates host macrophage responses. J Immunol 180: 8250–8261 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2668862&tool=pmcentrez&rendertype=abstract. PubMed PMC

Wiethe C, Debus A, Mohrs M, Steinkasserer A, Lutz M, et al. (2008) Dendritic cell differentiation state and their interaction with NKT cells determine Th1/Th2 differentiation in the murine model of Leishmania major infection. J Immunol 180: 4371–4381 Available: http://www.ncbi.nlm.nih.gov/pubmed/18354157. PubMed

Pós Z, Müller K, Novalphak I, Buzás E, Solbach W, et al. (2004) Different patterns of the L-histidine decarboxylase (HDC) gene expression in mice resistant and susceptible to experimental cutaneous leishmaniasis. Inflamm Res 53: 38–43 Available: http://www.ncbi.nlm.nih.gov/pubmed/15021979. PubMed

Xin L, Vargas-Inchaustegui DA, Raimer SS, Kelly BC, Hu J, et al. (2010) Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J Immunol 184: 7047–7056 Available: http://www.ncbi.nlm.nih.gov/pubmed/20483775. PubMed PMC

Goto H, Gomes CM, Corbett CE, Monteiro HP, Gidlund M (1998) Insulin-like growth factor I is a growth-promoting factor for Leishmania promastigotes and amastigotes. Proc Natl Acad Sci USA 95: 13211–13216 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23762&tool=pmcentrez&rendertype=abstract. PubMed PMC

Voronov E, Dotan S, Gayvoronsky L, White RM, Cohen I, et al. (2010) IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. Int Immunol 22: 245–257 Available: http://www.ncbi.nlm.nih.gov/pubmed/20181656. PubMed

Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK (1993) Recombinant interleukin 12 cures mice infected with Leishmania major . J Exp Med 177: 1505–1509 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2191017&tool=pmcentrez&rendertype=abstract. PubMed PMC

Contreras I, Gómez MA, Nguyen O, Shio MT, McMaster RW, et al. (2010) Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63. PLoS Pathog 6: e1001148 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2954837&tool=pmcentrez&rendertype=abstract. PubMed PMC

Pelletier I, Hashidate T, Urashima T, Nishi N, Nakamura T, et al. (2003) Specific recognition of Leishmania major poly-beta-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem 278: 22223–22230 Available: http://www.ncbi.nlm.nih.gov/pubmed/12684513. PubMed

Saraiva EM, Andrade AF, de Souza W (1987) Involvement of the macrophage mannose-6-phosphate receptor in the recognition of Leishmania mexicana amazonensis . Parasitol Res 73: 411–416 Available: http://www.ncbi.nlm.nih.gov/pubmed/2958844. PubMed

Hutchins AS, Artis D, Hendrich BD, Bird AP, Scott P, et al. (2005) Cutting edge: a critical role for gene silencing in preventing excessive type 1 immunity. J Immunol 175: 5606–5610 Available: http://www.ncbi.nlm.nih.gov/pubmed/16237047. PubMed

Jüttner S, Bernhagen J, Metz CN, Röllinghoff M, Bucala R, et al. (1998) Migration inhibitory factor induces killing of Leishmania major by macrophages: dependence on reactive nitrogen intermediates and endogenous TNF-alpha. J Immunol 161: 2383–2390. PubMed

Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WLC, et al. (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40: 2830–2836 Available: http://www.ncbi.nlm.nih.gov/pubmed/20812234. PubMed

Kanaan SA, Saadé NE, Karam M, Khansa H, Jabbur SJ, et al. (2000) Hyperalgesia and upregulation of cytokines and nerve growth factor by cutaneous leishmaniasis in mice. Pain 85: 477–482 Available: http://www.ncbi.nlm.nih.gov/pubmed/10781922. PubMed

Blos M, Schleicher U, Soares Rocha FJ, Meissner U, Röllinghoff M, et al. (2003) Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol 33: 1224–1234 Available: http://www.ncbi.nlm.nih.gov/pubmed/12731047. PubMed

Auderset F, Schuster S, Coutaz M, Koch U, Desgranges F, et al. (2012) Redundant Notch1 and Notch2 signaling is necessary for IFNγ secretion by T helper 1 cells during infection with Leishmania major . PLoS Pathog 8: e1002560 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3291656&tool=pmcentrez&rendertype=abstract. PubMed PMC

Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, et al. (2009) Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2: ra58 Available: http://www.ncbi.nlm.nih.gov/pubmed/19797268. PubMed

Canton J, Ndjamen B, Hatsuzawa K, Kima PE (2012) Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection. Cell Microbiol 14: 937–948 Available: http://www.ncbi.nlm.nih.gov/pubmed/22309219. PubMed

Castellucci L, Jamieson SE, Almeida L, Oliveira J, Guimarães LH, et al. (2012) Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil. Inf Genet Evol 12: 1102–1110 Available: http://www.ncbi.nlm.nih.gov/pubmed/22554650. PubMed PMC

Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, et al. (2012) Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 8: e1002417 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3261917&tool=pmcentrez&rendertype=abstract. PubMed PMC

Stanley AC, Dalton JE, Rossotti SH, MacDonald KP, Zhou Y, et al. (2008) VCAM-1 and VLA-4 modulate dendritic cell IL-12p40 production in experimental visceral leishmaniasis. PLoS Pathog 4: e1000158 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2528938&tool=pmcentrez&rendertype=abstract. PubMed PMC

Suh W-K, Wang S, Duncan GS, Miyazaki Y, Cates E, et al. (2006) Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol Cell Biol 26: 6403–6411 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1592821&tool=pmcentrez&rendertype=abstract. PubMed PMC

Smith DF, Peacock CS, Cruz AK (2007) Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol 37: 1173–1186 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2696322&tool=pmcentrez&rendertype=abstract. PubMed PMC

Raymond F, Boisvert S, Roy G, Ritt J-F, Légaré D, et al. (2012) Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucl Acids Res 40: 1131–1147 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3273817&tool=pmcentrez&rendertype=abstract. PubMed PMC

Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5: 618–625 Available: http://www.ncbi.nlm.nih.gov/pubmed/15266344. PubMed

Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, et al. (2000) Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun 1: 200–206 Available: http://www.ncbi.nlm.nih.gov/pubmed/11196712. PubMed

Havelková H, Badalová J, Svobodová M, Vojtíšková J, Kurey I, et al. (2006) Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun 7: 220–233 Available: http://www.ncbi.nlm.nih.gov/pubmed/16511555. PubMed

Kurey I, Kobets T, Havelková H, Slapničková M, Quan L, et al. (2009) Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics 61: 619–633 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2744819&tool=pmcentrez&rendertype=abstract. PubMed PMC

Caron J, Loredo-Osti JC, Laroche L, Skamene E, Morgan K, et al. (2002) Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection: an unexpected role of Nramp1 (Slc11a1) in the persistence of infection in mice. Genes Immun 3: 196–204 Available: http://www.ncbi.nlm.nih.gov/pubmed/12058254. PubMed

Atkinson A, Barbier M, Afridi S, Fumoux F, Rihet P (2011) Evidence for epistasis between hemoglobin C and immune genes in human P. falciparum malaria: a family study in Burkina Faso. Genes Immun 12: 481–489 Available: http://www.ncbi.nlm.nih.gov/pubmed/21451558. PubMed

Zhang F, Liu H, Chen S, Low H, Sun L, et al. (2011) Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet 43: 1247–1251 Available: http://www.ncbi.nlm.nih.gov/pubmed/22019778. PubMed

Serbina NV, Shi C, Pamer EG (2012) Monocyte-mediated immune defense against murine Listeria monocytogenes infection. Adv Immunol 113: 119–134 Available: http://www.ncbi.nlm.nih.gov/pubmed/22244581. PubMed PMC

van Wezel T, Stassen AP, Moen CJ, Hart AA, van der Valk MA, et al. (1996) Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat Genet 14: 468–470 Available: http://www.ncbi.nlm.nih.gov/pubmed/8944029. PubMed

Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AAM, et al. (2003) Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun 71: 2041–2046 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=152088&tool=pmcentrez&rendertype=abstract. PubMed PMC

Krulová M, Havelková H, Kosařová M, Holáň V, Hart AA, et al. (1997) IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomics 42: 11–15 Available: http://www.ncbi.nlm.nih.gov/pubmed/9177770. PubMed

Lipoldová M, Havelková H, Badalová J, Vojtíšková J, Quan L, et al. (2010) Loci controlling lymphocyte production of interferon γ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother 59: 203–213 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2776939&tool=pmcentrez&rendertype=abstract. PubMed PMC

Kosařová M, Havelková H, Krulová M, Demant P, Lipoldová M (1999) The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics 49: 134–141 Available: http://www.ncbi.nlm.nih.gov/pubmed/9887350. PubMed

Nadeau JH, Nelson VR (2010) Transgenerational genetic effects. Epigenomics 2: 797–806 Available: http://www.ncbi.nlm.nih.gov/pubmed/22122083. PubMed PMC

Stenger S, Donhauser N, Thüring H, Röllinghoff M, Bogdan C (1996) Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med 183: 1501–1514 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2192515&tool=pmcentrez&rendertype=abstract. PubMed PMC

Badalová J, Svobodová M, Havelková H, Vladimirov V, Vojtíšková J, et al. (2002) Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Imun 3: 187–195 Available: http://www.ncbi.nlm.nih.gov/pubmed/12058253. PubMed

Roper RJ, Weis JJ, McCracken BA, Green CB, Ma Y, et al. (2001) Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2: 388–397 Available: http://www.ncbi.nlm.nih.gov/pubmed/11704805. PubMed

Kumar R, Bumb RA, Salotra P (2010) Evaluation of localized and systemic immune responses in cutaneous leishmaniasis caused by Leishmania tropica: interleukin-8, monocyte chemotactic protein-1 and nitric oxide are major regulatory factors. Immunology 130: 193–201 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2878464&tool=pmcentrez&rendertype=abstract. PubMed PMC

Jandl RC, George JL, Dinarello CA, Schur PH (1987) The effect of interleukin 1 on IgG synthesis in systemic lupus erythematosus. Clin Immunol Immunopathol 45: 384–394 Available: http://www.ncbi.nlm.nih.gov/pubmed/3119264. PubMed

Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169: 1699–1709 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1449540&tool=pmcentrez&rendertype=abstract. PubMed PMC

Moen CJ, Stoffers HJ, Hart AA, Westerhoff HV, Demant P (1997) Simulation of the distribution of parental strains' genomes in RC strains of mice. Mamm Genome 8: 884–889 Available: http://www.ncbi.nlm.nih.gov/pubmed/9383279. PubMed

Gusareva ES, Havelková H, Blažková H, Kosařová M, Kučera P, et al. (2009) Mouse to human comparative genetics reveals a novel immunoglobulin E-controlling locus on Hsa8q12 . Immunogenetics 61: 15–25 Available: http://www.ncbi.nlm.nih.gov/pubmed/19015841. PubMed

Johnson J, Suzuki Y, Mack D, Mui E, Estes R, et al. (2002) Genetic analysis of influences on survival following Toxoplasma gondii infection. Int J Parasitol 32: 179–185 Available: http://www.ncbi.nlm.nih.gov/pubmed/11812495. PubMed

Rathkolb B, Noyes HA, Brass A, Dark P, Fuchs H, et al. (2009) Clinical chemistry of congenic mice with quantitative trait loci for predicted responses to Trypanosoma congolense infection. Infect Immun 77: 3948–3957 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2738039&tool=pmcentrez&rendertype=abstract. PubMed PMC

Miyairi I, Ziebarth J, Laxton JD, Wang X, van Rooijen N, et al. (2012) Host genetics and Chlamydia disease: prediction and validation of disease severity mechanisms. PLoS One 7: e33781 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3306297&tool=pmcentrez&rendertype=abstract. PubMed PMC

Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11: 446–450 Available: http://www.ncbi.nlm.nih.gov/pubmed/20479774. PubMed PMC

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753 Available: http://www.ncbi.nlm.nih.gov/pubmed/19812666. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace