Genotype-driven sensitivity of mice to tick-borne encephalitis virus correlates with differential host responses in peripheral macrophages and brain

. 2025 Jan 28 ; 22 (1) : 22. [epub] 20250128

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39875898

Grantová podpora
23-08039S Grantová Agentura České Republiky
23-07160S Grantová Agentura České Republiky
RVO 86652036 Akademie Věd České Republiky
AV-21 Akademie Věd České Republiky
COOPERATIO Univerzita Karlova v Praze
LX22NPO5103 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39875898
PubMed Central PMC11776336
DOI 10.1186/s12974-025-03354-1
PII: 10.1186/s12974-025-03354-1
Knihovny.cz E-zdroje

BACKGROUND: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS: TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS: Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS: Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.

Zobrazit více v PubMed

Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019;164:23–51. PubMed DOI

Chiffi G, Grandgirard D, Leib SL, Chrdle A, Růžek D. Tick-borne encephalitis: a comprehensive review of the epidemiology, virology, and clinical picture. Rev Med Virol 2023:e2470. PubMed

Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, Imrie A, Kapoor A, Karganova GG, Lemey P, et al. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol. 2023;168:224. PubMed DOI

Bogovic P, Lotric-Furlan S, Strle F. What tick-borne encephalitis may look like: clinical signs and symptoms. Travel Med Infect Dis. 2010;8:246–50. PubMed DOI

Bogovic P, Strle F. Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015;3:430–41. PubMed DOI PMC

Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation. 2013;10:77. PubMed DOI PMC

Démant P, Hart AA. Recombinant congenic strains–a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics. 1986;24:416–22. PubMed DOI

Palus M, Sohrabi Y, Broman KW, Strnad H, Šíma M, Růžek D, Volkova V, Slapničková M, Vojtíšková J, Mrázková L, et al. A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus. BMC Neurosci. 2018;19:39. PubMed DOI PMC

Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, Nuttall PA. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219:357–66. PubMed DOI

Khozinsky VV, Semenov BF, Gresíková M, Chunikhin SP, Sekeyová M, Kozuch O. Role of macrophages in the pathogenesis of experimental tick-borne encephalitis in mice. Acta Virol. 1985;29:194–202. PubMed

Mims CA. THE PERITONEAL MACROPHAGES OF MICE. Br J Exp Pathol. 1964;45:37–43. PubMed PMC

Mims CA. ASPECTS OF THE PATHOGENESIS OF VIRUS DISEASES. Bacteriol Rev. 1964;28:30–71. PubMed DOI PMC

Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66. PubMed DOI

Růžek D, Dobler G, Donoso Mantke O. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med Infect Dis. 2010;8:223–32. PubMed DOI

Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol. 2005;64:506–12. PubMed DOI

Gelpi E, Preusser M, Laggner U, Garzuly F, Holzmann H, Heinz FX, Budka H. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol. 2006;12:322–7. PubMed DOI

De Madrid AT, Porterfield JS. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ. 1969;40:113–21. PubMed PMC

Pokorna Formanova P, Palus M, Salat J, Hönig V, Stefanik M, Svoboda P, Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J Neuroinflammation. 2019;16:205. PubMed DOI PMC

Sohrabi Y, Volkova V, Kobets T, Havelková H, Krayem I, Slapničková M, Demant P, Lipoldová M. Genetic regulation of guanylate-binding proteins 2b and 5 during Leishmaniasis in mice. Front Immunol. 2018;9:130. PubMed DOI PMC

Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, Vojtíšková J, Aidarova A, Holáň V, Demant P, Lipoldová M. Genetic influence on frequencies of myeloid-derived cell subpopulations in mouse. Front Immunol. 2022;12:760881. PubMed DOI PMC

Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B. QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics. 2008;9:465. PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W. Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. PubMed DOI PMC

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2:100141. PubMed PMC

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9. PubMed DOI PMC

Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, Hill DP et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224. PubMed PMC

Edgar R, Domrachev M, Lash AE. Gene expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10. PubMed DOI PMC

Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66. PubMed DOI

Xu X, Masubuchi T, Cai Q, Zhao Y, Hui E. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors. Elife 2021, 10. PubMed PMC

Barkhash AV, Babenko VN, Kobzev VF, Romaschenko AG, Voevoda MI. Polymorphism of 2’-5’-oligoadenylate synthetase (OAS) genes, associated with predisposition to severe forms of tick-borne encephalitis, in human populations of North Eurasia. Mol Biol. 2010;44:875–82. PubMed DOI PMC

Barkhash AV, Babenko VN, Voevoda MI, Romaschenko AG. Association of IL28B and IL10 gene polymorphism with predisposition to tick-borne encephalitis in a Russian population. Ticks Tick Borne Dis. 2016;7:808–12. PubMed DOI

Barkhash AV, Perelygin AA, Babenko VN, Brinton MA, Voevoda MI. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral Res. 2012;93:64–8. PubMed DOI

Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG, Voevoda MI, Brinton MA. Variability in the 2’-5’-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J Infect Dis. 2010;202:1813–8. PubMed DOI

Barkhash AV, Voevoda MI, Romaschenko AG. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral Res. 2013;99:136–8. PubMed DOI

Barkhash AV, Yurchenko AA, Yudin NS, Ignatieva EV, Kozlova IV, Borishchuk IA, Pozdnyakova LL, Voevoda MI, Romaschenko AG. A matrix metalloproteinase 9 (MMP9) gene single nucleotide polymorphism is associated with predisposition to tick-borne encephalitis virus-induced severe central nervous system disease. Ticks Tick Borne Dis. 2018;9:763–7. PubMed DOI

Fortova A, Barkhash AV, Pychova M, Krbkova L, Palus M, Salat J, Ruzek D. Genetic polymorphisms in innate immunity genes influence predisposition to tick-borne encephalitis. J Neurovirol. 2023;29:699–705. PubMed DOI PMC

Fortova A, Hönig V, Salat J, Palus M, Pychova M, Krbkova L, Barkhash AV, Kriha MF, Chrdle A, Lipoldova M, Ruzek D. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker in paediatric and adult tick-borne encephalitis patients. Virus Res. 2023;324:199020. PubMed DOI PMC

Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics. 2019;12:61. PubMed DOI PMC

Czupryna P, Parczewski M, Grygorczuk S, Pancewicz S, Zajkowska J, Dunaj J, Kondrusik M, Krawczuk K, Moniuszko-Malinowska A. Analysis of the relationship between single nucleotide polymorphism of the CD209, IL-10, IL-28 and CCR5 D32 genes with the human predisposition to developing tick-borne encephalitis. Postepy Hig Med Dosw (Online). 2017;71:788–96. PubMed DOI

Mickienė A, Pakalnienė J, Nordgren J, Carlsson B, Hagbom M, Svensson L, Lindquist L. Polymorphisms in chemokine receptor 5 and toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS ONE. 2014;9:e106798. PubMed DOI PMC

Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197:266–9. PubMed DOI

Mandl CW. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 2005;111:161–74. PubMed DOI

Kobets T, Čepičková M, Volkova V, Sohrabi Y, Havelková H, Svobodová M, Demant P, Lipoldová M. Novel loci Controlling Parasite load in organs of mice infected with Leishmania major, their interactions and sex influence. Front Immunol. 2019;10:1083. PubMed DOI PMC

Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, Kurey I, Sohrabi Y, Svobodová M, Demant P, Lipoldová M. Genetics of host response to Leishmania Tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis. 2012;6:e1667. PubMed DOI PMC

Krayem I, Sohrabi Y, Havelková H, Gusareva ES, Strnad H, Čepičková M, Volkova V, Kurey I, Vojtíšková J, Svobodová M, et al. Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions. Front Immunol. 2023;14:1145269. PubMed DOI PMC

Lipoldová M, Demant P. Gene-Specific Sex effects on susceptibility to Infectious diseases. Front Immunol. 2021;12:712688. PubMed DOI PMC

Lipoldová M, Havelková H, Badalova J, Vojtísková J, Quan L, Krulova M, Sohrabi Y, Stassen AP, Demant P. Loci controlling lymphocyte production of interferon c after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother. 2010;59:203–13. PubMed DOI PMC

Mrázek J, Mrázková L, Mekadim C, Jarošíková T, Krayem I, Sohrabi Y, Demant P, Lipoldová M. Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice. Appl Microbiol Biotechnol. 2024;108:145. PubMed DOI PMC

Síma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, Stassen AP, Demant P, Lipoldová M. Genetic control of resistance to Trypanosoma Brucei brucei infection in mice. PLoS Negl Trop Dis. 2011;5:e1173. PubMed DOI PMC

Slapničková M, Volkova V, Čepičková M, Kobets T, Šíma M, Svobodová M, Demant P, Lipoldová M. Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biol Sex Differ. 2016;7:59. PubMed DOI PMC

Sohrabi Y, Havelková H, Kobets T, Šíma M, Volkova V, Grekov I, Jarošíková T, Kurey I, Vojtíšková J, Svobodová M, et al. Mapping the genes for susceptibility and response to Leishmania Tropica in mouse. PLoS Negl Trop Dis. 2013;7:e2282. PubMed DOI PMC

Ahantarig A, Růzek D, Vancová M, Janowitz A, St’astná H, Tesarová M, Grubhoffer L. Tick-borne encephalitis virus infection of cultured mouse macrophages. Intervirology. 2009;52:283–90. PubMed DOI

Růzek D, Gritsun TS, Forrester NL, Gould EA, Kopecký J, Golovchenko M, Rudenko N, Grubhoffer L. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a western European field strain of tick-borne encephalitis virus. Virology. 2008;374:249–55. PubMed DOI

Rusanov AL, Stepanov AA, Zgoda VG, Kaysheva AL, Selinger M, Maskova H, Loginov D, Sterba J, Grubhoffer L, Luzgina NG. Proteome dataset of mouse macrophage cell line infected with tick-borne encephalitis virus. Data Brief. 2020;28:105029. PubMed DOI PMC

Rusanov AL, Kozhin PM, Tikhonova OV, Zgoda VG, Loginov DS, Chlastáková A, Selinger M, Sterba J, Grubhoffer L, Luzgina NG. Proteome Profiling of PMJ2-R and primary peritoneal macrophages. Int J Mol Sci 2021, 22. PubMed PMC

Clarke P, Leser JS, Bowen RA, Tyler KL. Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases. mBio. 2014;5:e00902–00914. PubMed DOI PMC

Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx. 2005;2:73–85. PubMed DOI PMC

Gorman MJ, Poddar S, Farzan M, Diamond MS. The Interferon-stimulated gene Ifitm3 restricts West Nile Virus infection and Pathogenesis. J Virol. 2016;90:8212–25. PubMed DOI PMC

Chmielewska AM, Gómez-Herranz M, Gach P, Nekulova M, Bagnucka MA, Lipińska AD, Rychłowski M, Hoffmann W, Król E, Vojtesek B, et al. The role of IFITM proteins in Tick-Borne Encephalitis Virus infection. J Virol. 2022;96:e0113021. PubMed DOI PMC

Panayiotou C, Lindqvist R, Kurhade C, Vonderstein K, Pasto J, Edlund K, Upadhyay AS, Överby AK. Viperin restricts Zika Virus and Tick-Borne Encephalitis Virus replication by targeting NS3 for proteasomal degradation. J Virol 2018, 92. PubMed PMC

Schoggins JW. Recent advances in antiviral interferon-stimulated gene biology. F1000Res. 2018;7:309. PubMed DOI PMC

Banus HA, van Kranen HJ, Mooi FR, Hoebee B, Nagelkerke NJ, Demant P, Kimman TG. Genetic control of Bordetella pertussis infection: identification of susceptibility loci using recombinant congenic strains of mice. Infect Immun. 2005;73:741–7. PubMed DOI PMC

Biswas SM, Kar S, Singh R, Chakraborty D, Vipat V, Raut CG, Mishra AC, Gore MM, Ghosh D. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. J Med Virol. 2010;82:304–10. PubMed DOI

Shirato K, Kimura T, Mizutani T, Kariwa H, Takashima I. Different chemokine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol. 2004;74:507–13. PubMed DOI

Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S. Innate host responses to West Nile virus: implications for central nervous system immunopathology. World J Virol. 2013;2:49–56. PubMed DOI PMC

Quaresma JA, Pagliari C, Medeiros DB, Duarte MI, Vasconcelos PF. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever. Rev Med Virol. 2013;23:305–18. PubMed DOI

King NJ, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM. Immunopathology of flavivirus infections. Immunol Cell Biol. 2007;85:33–42. PubMed DOI

Fazakerley JK, Walker R. Virus demyelination. J Neurovirol. 2003;9:148–64. PubMed DOI PMC

Yang H, Wang X, Wang Z, Wang G, Fu S, Li F, Yang L, Yuan Y, Shen K, Wang H, Wang Z. Peripheral nerve Injury Induced by Japanese Encephalitis Virus in C57BL/6 mouse. J Virol. 2023;97:e0165822. PubMed DOI PMC

Erman BA, Tulakina LG, Zubenko AV, Subbotina LS. [Ultrastructural changes in the CNS of monkeys with the chronic form of tick-borne encephalitis]. Arkh Patol. 1985;47:46–52. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...