Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
agreement #14.616.21.0094, unique identifier RFMEFI61618X0094
the framework of the Russian Federation fundamental research program for the long-term period for 2021-2030» and also supported by the Ministry of Science and Higher Education of the Russian Federation
LTARF 18021
the Ministry of Education, Youth and Sports of the Czech Republic INTER-ACTION project
PubMed
34204832
PubMed Central
PMC8231560
DOI
10.3390/ijms22126323
PII: ijms22126323
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS/MS, PMJ2-R, peritoneal macrophages, phagocytosis, proteome,
- MeSH
- down regulace MeSH
- fagocytóza MeSH
- genová ontologie MeSH
- kultivované buňky MeSH
- mapy interakcí proteinů MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- peritoneální makrofágy metabolismus MeSH
- proteom metabolismus MeSH
- proteomika * MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteom MeSH
In vitro models are often used for studying macrophage functions, including the process of phagocytosis. The application of primary macrophages has limitations associated with the individual characteristics of animals, which can lead to insufficient standardization and higher variability of the obtained results. Immortalized cell lines do not have these disadvantages, but their responses to various signals can differ from those of the living organism. In the present study, a comparative proteomic analysis of immortalized PMJ2-R cell line and primary peritoneal macrophages isolated from C57BL/6 mice was performed. A total of 4005 proteins were identified, of which 797 were quantified. Obtained results indicate significant differences in the abundances of many proteins, including essential proteins associated with the process of phagocytosis, such as Elmo1, Gsn, Hspa8, Itgb1, Ncf2, Rac2, Rack1, Sirpa, Sod1, C3, and Msr1. These findings indicate that outcomes of studies utilizing PMJ2-R cells as a model of peritoneal macrophages should be carefully validated. All MS data are deposited in ProteomeXchange with the identifier PXD022133.
5 N Orekhovich Research Institute of Biomedical Chemistry Pogodinskaja Str 10 119121 Moscow Russia
BioCeV Institute of Microbiology of the CAS Prumyslova 595 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Pamies D., Bal-Price A., Chesné C., Coecke S., Dinnyes A., Eskes C., Grillari R., Gstraunthaler G., Hartung T., Jennings P., et al. Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX. 2018;35:353–378. doi: 10.14573/altex.1710081. PubMed DOI
Lee C.Z.W., Kozaki T., Ginhoux F. Studying tissue macrophages in vitro: Are iPSC-derived cells the answer? Nat. Rev. Immunol. 2018;18:716–725. doi: 10.1038/s41577-018-0054-y. PubMed DOI
Fitzgerald M.L., Moore K.J., Freeman M.W., Reed G.L. Lipopolysaccharide induces scavenger receptor A expression in mouse macrophages: A divergent response relative to human THP-1 monocyte/macrophages. J. Immunol. 2000;164:2692–2700. doi: 10.4049/jimmunol.164.5.2692. PubMed DOI
Chaudhry M.Z., Kasmapour B., Plaza-Sirvent C., Bajagic M., Casalegno Garduño R., Borkner L., Lenac Roviš T., Scrima A., Jonjic S., Schmitz I., et al. UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene. Front. Cell. Infect. Microbiol. 2017;7:312. doi: 10.3389/fcimb.2017.00312. PubMed DOI PMC
Guo M., Hartlova A., Dill B.D., Prescott A.R., Gierlinski M., Trost M. High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics. 2015;15:3169–3174. doi: 10.1002/pmic.201400431. PubMed DOI PMC
Campbell-Valois F.X., Trost M., Chemali M., Dill B.D., Laplante A., Duclos S., Sadeghi S., Rondeau C., Morrow I.C., Bell C., et al. Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol. Cell. Proteomics. 2012;11:M111-016378. doi: 10.1074/mcp.M111.016378. PubMed DOI PMC
Trost M., English L., Lemieux S., Courcelles M., Desjardins M., Thibault P. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity. 2009;30:143–154. doi: 10.1016/j.immuni.2008.11.006. PubMed DOI
Marcantonio M., Trost M., Courcelles M., Desjardins M., Thibault P. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses: Application to cell signaling events of interferon-gamma-stimulated macrophages. Mol. Cell. Proteomics. 2008;7:645–660. doi: 10.1074/mcp.M700383-MCP200. PubMed DOI
Bell C., English L., Boulais J., Chemali M., Caron-Lizotte O., Desjardins M., Thibault P. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-alpha-activated (TNFalpha) macrophages. Mol. Cell. Proteomics. 2013;12:2394–2407. doi: 10.1074/mcp.M112.025775. PubMed DOI PMC
Adami C., Brunda M.J., Palleroni A.V. In vivo immortalization of murine peritoneal macrophages: A new rapid and efficient method for obtaining macrophage cell lines. J. Leukoc. Biol. 1993;53:475–478. doi: 10.1002/jlb.53.4.475. PubMed DOI
Rusanov A.L., Stepanov A.A., Zgoda V.G., Kaysheva A.L., Selinger M., Maskova H., Loginov D., Sterba J., Grubhoffer L., Luzgina N.G. Proteome dataset of mouse macrophage cell line infected with tick-borne encephalitis virus. Data Brief. 2019;28:105029. doi: 10.1016/j.dib.2019.105029. PubMed DOI PMC
Hume D.A. The Many Alternative Faces of Macrophage Activation. Front. Immunol. 2015;6:370. doi: 10.3389/fimmu.2015.00370. PubMed DOI PMC
Shkurupiy V.A., Tkachev V.O., Potapova O.V., Luzgina N.G., Bugrimova J.S., Obedinskaya K.S., Zaiceva N.S., Chechushkov A.V. Morphofunctional characteristics of the immune system in CBA and C57BL/6 mice. Bull. Exp. Biol. Med. 2011;150:725–728. doi: 10.1007/s10517-011-1234-y. PubMed DOI
Heinz S., Romanoski C.E., Benner C., Allison K.A., Kaikkonen M.U., Orozco L.D., Glass C.K. Effect of natural genetic variation on enhancer selection and function. Nature. 2013;503:487–492. doi: 10.1038/nature12615. PubMed DOI PMC
Raza S., Barnett M.W., Barnett-Itzhaki Z., Amit I., Hume D.A., Freeman T.C. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J. Leukoc. Biol. 2014;96:167–183. doi: 10.1189/jlb.6HI0313-169R. PubMed DOI PMC
Wells C.A., Ravasi T., Faulkner G.J., Carninci P., Okazaki Y., Hayashizaki Y., Sweet M., Wainwright B.J., Hume D.A. Genetic control of the innate immune response. BMC Immunol. 2003;4:5. doi: 10.1186/1471-2172-4-5. PubMed DOI PMC
Aderem A., Underhill D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999;17:593–623. doi: 10.1146/annurev.immunol.17.1.593. PubMed DOI
Pustylnikov S., Sagar D., Jain P., Khan Z.K. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J. Pharm. Pharm. Sci. 2014;17:371–392. doi: 10.18433/J3N590. PubMed DOI PMC
Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429. PubMed DOI
Wynn T.A., Vannella K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44:450–462. doi: 10.1016/j.immuni.2016.02.015. PubMed DOI PMC
Mogilenko D.A., Kudriavtsev I.V., Trulioff A.S., Shavva V.S., Dizhe E.B., Missyul B.V., Zhakhov A.V., Ischenko A.M., Perevozchikov A.P., Orlov S.V. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J. Biol. Chem. 2012;287:5954–5968. doi: 10.1074/jbc.M111.289322. PubMed DOI PMC
Ruan C.-C., Ge Q., Li Y., Li X.-D., Chen D.-R., Ji K.-D., Wu Y.-J., Sheng L.-J., Yan C., Zhu D.-L., et al. Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arter. Thromb. Vasc. Biol. 2015;35:598–606. doi: 10.1161/ATVBAHA.114.304927. PubMed DOI
Afzal Khan M., Assiri A.M., Broering D.C. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J. Biomed. Sci. 2015;22:58. doi: 10.1186/s12929-015-0151-1. PubMed DOI PMC
Serrander L., Skarman P., Rasmussen B., Witke W., Lew D.P., Krause K.H., Stendahl O., Nüsse O. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J. Immunol. 2000;165:2451–2457. doi: 10.4049/jimmunol.165.5.2451. PubMed DOI
Perry D.G., Daugherty G.L., Martin W.J. 2nd. Clathrin-coated pit-associated proteins are required for alveolar macrophage phagocytosis. J. Immunol. 1999;162:380–386. PubMed
Cheng Y.-L., Kuo C.-F., Lu S.-L., Hiroko O., Wu Y.-N., Hsieh C.-L., Noda T., Wu S.-R., Anderson R., Lin C.-F., et al. Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. mBio. 2019;10:e02148-19. doi: 10.1128/mBio.02148-19. PubMed DOI PMC
Hawk C.S., Coelho C., Lima de Oliveira D.S., Paredes V., Albuquerque P., Bocca A.L., Dos Santos A.C., Rusakova V., Holemon H., Silva-Pereira I., et al. Integrin β1 Promotes the Interaction of Murine IgG3 with Effector Cells. J. Immunol. 2019;202:2782–2794. doi: 10.4049/jimmunol.1701795. PubMed DOI PMC
Guo M., Härtlova A., Gierliński M., Prescott A., Castellvi J., Losa J.H., Petersen S.K., Wenzel U.A., Dill B.D., Emmerich C.H., et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38:e100299. doi: 10.15252/embj.2018100299. PubMed DOI PMC
Willingham S.B., Volkmer J.P., Gentles A.J., Sahoo D., Dalerba P., Mitra S.S., Wang J., Contreras-Trujillo H., Martin R., Cohen J.D., et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA. 2012;109:6662–6667. doi: 10.1073/pnas.1121623109. PubMed DOI PMC
Okazawa H., Motegi S., Ohyama N., Ohnishi H., Tomizawa T., Kaneko Y., Oldenborg P.-A., Ishikawa O., Matozaki T. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. 2005;174:2004–2011. doi: 10.4049/jimmunol.174.4.2004. PubMed DOI
Gauss K.A., Bunger P.L., Crawford M.A., McDermott B.E., Swearingen R., Nelson-Overton L.K., Siemsen D.W., Kobayashi S.D., Deleo F.R., Quinn M.T. Variants of the 5′-untranslated region of human NCF2: Expression and translational efficiency. Gene. 2006;366:169–179. doi: 10.1016/j.gene.2005.09.012. PubMed DOI
Thomas D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017;192:88–96. doi: 10.1016/j.imlet.2017.08.016. PubMed DOI
Pradip D., Peng X., Durden D.L. Rac2 specificity in macrophage integrin signaling: Potential role for Syk kinase. J. Biol. Chem. 2003;278:41661–41669. doi: 10.1074/jbc.M306491200. PubMed DOI
Chiriaco M., Salfa I., Di Matteo G., Rossi P., Finocchi A. Chronic granulomatous disease: Clinical, molecular, and therapeutic aspects. Pediatr. Allergy Immunol. 2016;27:242–253. doi: 10.1111/pai.12527. PubMed DOI
Marikovsky M., Ziv V., Nevo N., Harris-Cerruti C., Mahler O. Cu/Zn superoxide dismutase plays important role in immune response. J. Immunol. 2003;170:2993–3001. doi: 10.4049/jimmunol.170.6.2993. PubMed DOI
Sarkar A., Tindle C., Pranadinata R.F., Reed S., Eckmann L., Stappenbeck T.S., Ernst P.B., Das S. ELMO1 Regulates Autophagy Induction and Bacterial Clearance During Enteric Infection. J. Infect. Dis. 2017;216:1655–1666. doi: 10.1093/infdis/jix528. PubMed DOI PMC
Gong P., Chen S., Zhang L., Hu Y., Gu A., Zhang J., Wang Y. RhoG-ELMO1-RAC1 is involved in phagocytosis suppressed by mono-butyl phthalate in TM4 cells. Environ. Sci. Pollut. Res. Int. 2018;25:35440–35450. doi: 10.1007/s11356-018-3503-z. PubMed DOI
Katoh H., Hiramoto K., Negishi M. Activation of Rac1 by RhoG regulates cell migration. J. Cell Sci. 2006;119:56–65. doi: 10.1242/jcs.02720. PubMed DOI
Csépányi-Kömi R., Sirokmány G., Geiszt M., Ligeti E. ARHGAP25, a novel Rac GTPase-activating protein, regulates phagocytosis in human neutrophilic granulocytes. Blood. 2012;119:573–582. doi: 10.1182/blood-2010-12-324053. PubMed DOI
Csépányi-Kömi R., Lévay M., Ligeti E. Rho/RacGAPs Embarras de richesse? Small GTPases. 2012;3:178–182. doi: 10.4161/sgtp.20040. PubMed DOI PMC
Wheeler A.P., Wells C.M., Smith S.D., Vega F.M., Henderson R.B., Tybulewicz V.L., Ridley A.J. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. Cell Sci. 2006;119 (Pt 13):2749–2757. doi: 10.1242/jcs.03024. PubMed DOI
Hoppe A.D., Swanson J.A. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell. 2004;15:3509–3519. doi: 10.1091/mbc.e03-11-0847. PubMed DOI PMC
Park H., Chan M.M., Iritani B.M. Hem-1: Putting the “WAVE” into actin polymerization during an immune response. FEBS Lett. 2010;584:4923–4932. doi: 10.1016/j.febslet.2010.10.018. PubMed DOI PMC
Park H., Cox D. Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol. Biol. Cell. 2009;20:4500–4508. doi: 10.1091/mbc.e09-03-0230. PubMed DOI PMC
Park H., Staehling-Hampton K., Appleby M.W., Brunkow M.E., Habib T., Zhang Y., Ramsdell F., Liggitt H.D., Freie B., Tsang M., et al. A point mutation in the murine Hem1 gene reveals an essential role for Hematopoietic protein 1 in lymphopoiesis and innate immunity. J. Exp. Med. 2008;205:2899–2913. doi: 10.1084/jem.20080340. PubMed DOI PMC
Chan M.M., Wooden J.M., Tsang M., Gilligan D.M., Hirenallur-S D.K., Finney G.L., Rynes E., Maccoss M., Ramirez J.A., Park H., et al. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes. PLoS ONE. 2013;8:e54902. doi: 10.1371/journal.pone.0054902. PubMed DOI PMC
Roskoski R., Jr. Src protein-tyrosine kinase structure and regulation. Biochem. Biophys. Res. Commun. 2004;324:1155–1164. doi: 10.1016/j.bbrc.2004.09.171. PubMed DOI
Roskoski R., Jr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem. Biophys. Res. Commun. 2005;331:1–14. doi: 10.1016/j.bbrc.2005.03.012. PubMed DOI
Tardif M., Savard M., Flamand L., Gosselin J. Impaired protein kinase C activation/translocation in Epstein-Barr virus-infected monocytes. J. Biol. Chem. 2002;277:24148–24154. doi: 10.1074/jbc.M109036200. PubMed DOI
Thorslund S.E., Edgren T., Pettersson J., Nordfelth R., Sellin M.E., Ivanova E., Francis M.S., Isaksson E.L., Wolf-Watz H., Fällman M. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS ONE. 2011;6:e16784. doi: 10.1371/journal.pone.0016784. PubMed DOI PMC
McCahill A., Warwicker J., Bolger G.B., Houslay M.D., Yarwod S.J. The RACK1 scaffold protein: A dynamic cog in cell response mechanisms. Mol. Pharmacol. 2002;62:1261–1273. doi: 10.1124/mol.62.6.1261. PubMed DOI
Wang F., Yamauchi M., Muramatsu M., Osawa T., Tsuchida R., Shibuya M. RACK1 regulates VEGF/Flt1-mediated cell migration via activation of a PI3K/Akt pathway. J. Biol. Chem. 2011;286:9097–9106. doi: 10.1074/jbc.M110.165605. PubMed DOI PMC
Tait J.F., Frankenberry D.A., Miao C.H., Killary A.M., Adler D.A., Disteche C.M. Chromosomal localization of the human annexin III (ANX3) gene. Genomics. 1991;10:441–448. doi: 10.1016/0888-7543(91)90330-H. PubMed DOI
Diakonova M., Gerke V., Ernst J., Liautard J.P., van der Vusse G., Griffiths G. Localization of five annexins in J774 macrophages and on isolated phagosomes. J. Cell Sci. 1997;110:1199–1213. doi: 10.1242/jcs.110.10.1199. PubMed DOI
Ye W., Li Y., Fan L., Zhao Q., Yuan H., Tan B., Zhang Z. Effect of annexin A7 suppression on the apoptosis of gastric cancer cells. Mol. Cell. Biochem. 2017;429:33–43. doi: 10.1007/s11010-016-2934-4. PubMed DOI
Wang L., Li X., Ren Y., Geng H., Zhang Q., Cao L., Meng Z., Wu X., Xu M., Xu K. Cancer-associated fibroblasts contribute to cisplatin resistance by modulating ANXA3 in lung cancer cells. Cancer Sci. 2019;110:1609–1620. doi: 10.1111/cas.13998. PubMed DOI PMC
Rosenbaum S., Kreft S., Etich J., Frie C., Stermann J., Grskovic I., Frey B., Mielenz D., Pöschl E., Gaipl U., et al. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif. J. Biol. Chem. 2011;286:5708–5716. doi: 10.1074/jbc.M110.193086. PubMed DOI PMC
Shirakabe K., Hattori S., Seiki M., Koyasu S., Okada Y. VIP36 protein is a target of ectodomain shedding and regulates phagocytosis in macrophage Raw 264.7 cells. J. Biol. Chem. 2011;286:43154–43163. doi: 10.1074/jbc.M111.275586. PubMed DOI PMC
Otani Y., Yamaguchi Y., Sato Y., Furuichi T., Ikenaka K., Kitani H., Baba H. PLD4 is involved in phagocytosis of microglia: Expression and localization changes of PLD4 are correlated with activation state of microglia. PLoS ONE. 2011;6:e27544. doi: 10.1371/journal.pone.0027544. PubMed DOI PMC
Gao L., Zhou Y., Zhou S.-X., Yu X.-J., Xu J.-M., Zuo L., Luo Y.-H., Li X.-A. PLD4 promotes M1 macrophages to perform antitumor effects in colon cancer cells. Oncol. Rep. 2017;37:408–416. doi: 10.3892/or.2016.5216. PubMed DOI
Click R.E. Review: 2-mercaptoethanol alteration of in vitro immune functions of species other than murine. J. Immunol. Methods. 2014;402:1–8. doi: 10.1016/j.jim.2013.11.007. PubMed DOI PMC
Walker J.M., editor. Basic Protein and Peptide Protocols. 1st ed. Humana Press; Totowa, NJ, USA: 1994. The bicinchoninic acid (BCA) assay for protein quantitation; pp. 5–8. PubMed
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Barsnes H., Vaudel M. A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines. Proteome Res. 2018;17:2552–2555. doi: 10.1021/acs.jproteome.8b00175. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Conway J.R., Lex A., Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC
YIshihama Y., Oda T., Tabata T., Sato T., Nagasu J., Rappsilber M. Mann, Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 2005;4:1265–1272. doi: 10.1074/mcp.M500061-MCP200. PubMed DOI
Doncheva N.T., Morris J.H., Gorodkin J., Jensen L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC
Morris J.H., Apeltsin L., Newman A.M., Baumbach J., Wittkop T., Su G., Bader G.D., Ferrin T.E. clusterMaker: A multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics. 2011;12:436. doi: 10.1186/1471-2105-12-436. PubMed DOI PMC
Johnston D.G.W., Kearney J., Zasłona Z., Williams M.A., O’Neill L.A.J., Corr S.C. MicroRNA-21 Limits Uptake of Listeria monocytogenes by Macrophages to Reduce the Intracellular Niche and Control Infection. Front. Cell. Infect. Microbiol. 2017;7:201. doi: 10.3389/fcimb.2017.00201. PubMed DOI PMC
Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC