Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37392370
DOI
10.1002/rmv.2470
Knihovny.cz E-zdroje
- Klíčová slova
- epidemiology, immune response, molecular pathogenesis, neurological sequela, tick-borne encephalitis, tick-borne encephalitis virus,
- MeSH
- klíšťová encefalitida * epidemiologie prevence a kontrola MeSH
- kvalita života MeSH
- lidé MeSH
- RNA MeSH
- veřejné zdravotnictví MeSH
- viry klíšťové encefalitidy * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- RNA MeSH
Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.
Department for BioMedical Research University of Bern Bern Switzerland
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Infectious Diseases Hospital Ceske Budejovice Ceske Budejovice Czech Republic
Faculty of Health and Social Sciences University of South Bohemia Ceske Budejovice Czech Republic
Institute for Infectious Diseases University of Bern Bern Switzerland
Royal Liverpool University Hospital Liverpool UK
Veterinary Research Institute Emerging Viral Diseases Brno Czech Republic
Zobrazit více v PubMed
Jarmer J, Zlatkovic J, Tsouchnikas G, et al. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination. J Virol. 2014;88(23):13845-13857. https://doi.org/10.1128/jvi.02086-14
Tonteri E, Kipar A, Voutilainen L, et al. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus). PLoS One. 2013;8(12):e81214. https://doi.org/10.1371/journal.pone.0081214
Ruzek D, Avšič Županc T, Borde J, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antivir Res. 2019;164:23-51. https://doi.org/10.1016/j.antiviral.2019.01.014
Dai X, Shang G, Lu S, Yang J, Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg Microb Infect. 2018;7(1):1-9. https://doi.org/10.1038/s41426-018-0081-6
Valeryevna KI, Demina TV, Tkachev SE, et al. Characteristics of the baikal subtype of tick-borne encephalitis virus circulating in eastern siberia. Acta Biomed Sci. 2018;3(4):53-60. https://doi.org/10.29413/abs.2018-3.4.9
Dörrbecker B, Dobler G, Spiegel M, Hufert FT. Tick-borne encephalitis virus and the immune response of the mammalian host. Trav Med Infect Dis. 2010;8(4):213-222. https://doi.org/10.1016/j.tmaid.2010.05.010
Bogovic P, Strle F. Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015;3(5):430-441. https://doi.org/10.12998/wjcc.v3.i5.430
Leiby DA, Gill JE. Transfusion-transmitted tick-borne infections: a cornucopia of threats. Transfus Med Rev. 2004;18(4):293-306. https://doi.org/10.1016/j.tmrv.2004.07.001
Lipowski D, Popiel M, Perlejewski K, et al. A cluster of fatal tick-borne encephalitis virus infection in organ transplant setting. J Infect Dis. 2017;215(6):896-901. https://doi.org/10.1093/infdis/jix040
Kerlik J, Avdičová M, Musilová M, Bérešová J, Mezencev R. Breast milk as route of tick-borne encephalitis virus transmission from mother to infant. Emerg Infect Dis. 2022;28(5):1060-1061. https://doi.org/10.3201/eid2805.212457
Avšič-Županc T, Poljak M, Matičič M, et al. Laboratory acquired tick-borne meningoencephalitis: characterisation of virus strains. Clin Diagn Virol. 1995;4(1):51-59. https://doi.org/10.1016/0928-0197(94)00062-y
Scherer WF, Eddy GA, Monath TP. Laboratory safety for arboviruses and certain other viruses of vertebrates. The subcommittee on arbovirus laboratory safety of the American committee on arthropod-borne viruses. Am J Trop Med Hyg. 1980;29:1359-1381.
Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis. 2011;2(1):2-15. https://doi.org/10.1016/j.ttbdis.2010.10.007
Taba P, Schmutzhard E, Forsberg P, et al. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur J Neurol. 2017;24(10):1214-e61. https://doi.org/10.1111/ene.13356
Dekker M, Laverman GD, de Vries A, Reimerink J, Geeraedts F. Emergence of tick-borne encephalitis (TBE) in the Netherlands. Ticks Tick Borne Dis. 2019;10(1):176-179. https://doi.org/10.1016/j.ttbdis.2018.10.008
Kreusch TM, Holding M, Hewson R, et al. A probable case of tick-borne encephalitis (TBE) acquired in England, July 2019. Euro Surveill. 2019;24(47):1-5. https://doi.org/10.2807/1560-7917.es.2019.24.47.1900679
Mansbridge CT, Osborne J, Holding M, et al. Autochthonous tick-borne encephalitis in the United Kingdom: a second probable human case and local eco-epidemiological findings. Ticks Tick Borne Dis. 2022;13(1):101853. https://doi.org/10.1016/j.ttbdis.2021.101853
Fares W, Dachraoui K, Cherni S, et al. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick Borne Dis. 2021;12(1):101606. https://doi.org/10.1016/j.ttbdis.2020.101606
Khamassi Khbou M, Romdhane R, Foughali AA, et al. Presence of antibodies against tick-borne encephalitis virus in sheep in Tunisia, North Africa. BMC Vet Res. 2020;16(1):441. https://doi.org/10.1186/s12917-020-02651-6
Hansson K, Rosdahl A, Insulander M, et al. Tick-borne encephalitis (TBE) vaccine failures: a ten-year retrospective study supporting the rationale for adding an extra priming dose in individuals from the age of 50 years. Clin Infect Dis. 2020;70(2):245-251. https://doi.org/10.1093/cid/ciz176
Schley K, Friedrich J, Pilz A, et al. Evaluation of under-testing and under-diagnosis of tick-borne encephalitis in Germany. BMC Infect Dis. 2023;23(1):139. https://doi.org/10.1186/s12879-023-08101-6
Cocchio S, Bertoncello C, Napoletano G, et al. Do we know the true burden of tick-borne encephalitis? A cross-sectional study. Neuroepidemiology. 2020;54(3):227-234. https://doi.org/10.1159/000503236
Dobler G. Zoonotic tick-borne flaviviruses. Vet Microbiol. 2010;140(3-4):221-228. https://doi.org/10.1016/j.vetmic.2009.08.024
ECDC. European Centre for Disease Prevention and Control. Tick-borne Encephalitis - Annual Epidemiological Report 2016 [2014 Data]; 2016. https://www.ecdc.europa.eu/en/publications-data/tick-borne-encephalitis-annual-epidemiological-report-2016-2014-data-no-link
Annual Epidemiological Report for 2016. Tick-borne Encephalitis; 2016. https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2016-TBE.pdf
Erber W, Schmitt H-J, Vuković Janković T. Chapter 12a: Epidemiology by Country - an Overview. Tick-borne encephalitis - The Book; 2022. https://doi.org/10.33442/26613980_12A-5
Paradowska-Stankiewicz I, Pancer K, Poznańska A, et al. Tick-borne encephalitis epidemiology and surveillance in Poland, and comparison with selected European countries before and during the COVID-19 pandemic, 2008 to 2020. Euro Surveill. 2023;28(18):2200452. https://doi.org/10.2807/1560-7917.es.2023.28.18.2200452
Van Heuverswyn J, Hallmaier-Wacker LK, Beauté J, et al. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Euro Surveill. 2023;28(11):2200543. https://doi.org/10.2807/1560-7917.es.2023.28.11.2200543
Randolph SE. On behalf of the EDEN-TBD sub-proje, C. Human activities predominate in determining changing incidence of tick-borne encephalitis in Europe. Euro Surveill. 2010;15:19606.
Randolph SE. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Vet Parasitol. 2010;167(2-4):92-94. https://doi.org/10.1016/j.vetpar.2009.09.011
Füzik T, Formanová P, Růžek D, Yoshii K, Niedrig M, Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun. 2018;9(1):1-11. https://doi.org/10.1038/s41467-018-02882-0
Kuhn RJ, Zhang W, Rossmann MG, et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108(5):717-725. https://doi.org/10.1016/s0092-8674(02)00660-8
Zhang X, Ge P, Yu X, et al. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat Struct Mol Biol. 2013;20(1):105-110. https://doi.org/10.1038/nsmb.2463
Sirohi D, Chen Z, Sun L, et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science. 2016;352(6284):467-470. https://doi.org/10.1126/science.aaf5316
Wang X, Li SH, Zhu L, et al. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nat Commun. 2017;8(1):14. https://doi.org/10.1038/s41467-017-00024-6
Zhang W, Kaufmann B, Chipman PR, Kuhn RJ, Rossmann MG. Membrane curvature in flaviviruses. J Struct Biol. 2013;183(1):86-94. https://doi.org/10.1016/j.jsb.2013.04.005
Lindenbach B, Murray C, Thiel H, Rice C. Flaviviridae. Fields Virology. Vol 1. Lippincott Williams \& Wilkins; 2013:712-746.
Zhang Y, Kostyuchenko VA, Rossmann MG. Structural analysis of viral nucleocapsids by subtraction of partial projections. J Struct Biol. 2007;157(2):356-364. https://doi.org/10.1016/j.jsb.2006.09.002
Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T. Tick-borne encephalitis virus - a review of an emerging zoonosis. J Gen Virol. 2009;90(8):1781-1794. https://doi.org/10.1099/vir.0.011437-0
Heinz FX, Stiasny K, Holzmann H, et al. Vaccination and tick-borne encephalitis, central Europe. Emerg Infect Dis. 2013;19(1):69-76. https://doi.org/10.3201/eid1901.120458
Pulkkinen L, Butcher S, Anastasina M. Tick-borne encephalitis virus: a structural view. Viruses. 2018;10(7):350. https://doi.org/10.3390/v10070350
Heinz FX, Mandl CW. The molecular biology of tick-borne encephalitis virus. APMIS. 1993;101(7-12):735-745. https://doi.org/10.1111/j.1699-0463.1993.tb00174.x
Růžek D, Yoshii K, Bloom ME, Gould EA. Virology. In: Dobler G, Erber W, Schmitt HJ, eds. TBE-The Book. Global Health Press; 2017:12-26.
Gritsun TS, Gould EA. Origin and evolution of flavivirus 5′UTRs and panhandles: trans-terminal duplications? Virology. 2007;366(1):8-15. https://doi.org/10.1016/j.virol.2007.04.011
Proutski V, Gould EA, Holmes EC. Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res. 1997;25(6):1194-1202. https://doi.org/10.1093/nar/25.6.1194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC146583/pdf/251194.pdf
Gritsun TS, Gould EA. The 3′ untranslated region of tick-borne flaviviruses originated by the duplication of long repeat sequences within the open reading frame. Virology. 2006;354(2):217-223. https://doi.org/10.1016/j.virol.2006.03.002
Muto M, Kamitani W, Sakai M, et al. Identification and analysis of host proteins that interact with the 3′-untranslated region of tick-borne encephalitis virus genomic RNA. Virus Res. 2018;249:52-56. https://doi.org/10.1016/j.virusres.2018.03.006
Sakai M, Muto M, Hirano M, Kariwa H, Yoshii K. Virulence of tick-borne encephalitis virus is associated with intact conformational viral RNA structures in the variable region of the 3′-UTR. Virus Res. 2015;203:36-40. https://doi.org/10.1016/j.virusres.2015.03.006
Formanová P, Černý J, Bolfíková BČ, et al. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients. Ticks Tick Borne Dis. 2015;6(1):38-46. https://doi.org/10.1016/j.ttbdis.2014.09.002
Asghar N, Lee YP, Nilsson E, et al. The role of the poly(A) tract in the replication and virulence of tick-borne encephalitis virus. Sci Rep. 2016;6(1):39265. https://doi.org/10.1038/srep39265
Sakai M, Yoshii K, Sunden Y, Yokozawa K, Hirano M, Kariwa H. Variable region of the 3’ UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in a mouse model. J Gen Virol. 2014;95(4):823-835. https://doi.org/10.1099/vir.0.060046-0
Pijlman GP, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4(6):579-591. https://doi.org/10.1016/j.chom.2008.10.007
Manokaran G, Finol E, Wang C, et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science. 2015;350(6257):217-221. https://doi.org/10.1126/science.aab3369
Bidet K, Dadlani D, Garcia-Blanco MA. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog. 2014;10(7):e1004242. https://doi.org/10.1371/journal.ppat.1004242
Carletti T, Zakaria MK, Marcello A. The host cell response to tick-borne encephalitis virus. Biochem Biophys Res Commun. 2017;492(4):533-540. https://doi.org/10.1016/j.bbrc.2017.02.006
Chambers TM, Monath TP. The Flaviviruses: Structure, Replication and Evolution. Elsevier; 2003.
Samsa MM, Mondotte JA, Iglesias NG, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5(10):e1000632. https://doi.org/10.1371/journal.ppat.1000632
Yoshii K, Igarashi M, Ichii O, et al. A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles. J Gen Virol. 2012;93(1):27-38. https://doi.org/10.1099/vir.0.035964-0
Gritsun TS, Holmes EC, Gould EA. Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Res. 1995;35(3):307-321. https://doi.org/10.1016/0168-1702(94)00090-y
Kopecký J, Grubhoffer L, Kovář V, Jindrák L, Vokurková D. A putative host cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology. 1999;42(1):9-16. https://doi.org/10.1159/000024954
Kozlovskaya LI, Osolodkin D, Shevtsova A, et al. GAG-binding variants of tick-borne encephalitis virus. Virology. 2010;398(2):262-272. https://doi.org/10.1016/j.virol.2009.12.012
Mandl CW. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 2005;111(2):161-174. https://doi.org/10.1016/j.virusres.2005.04.007
Miorin L, Romero-Brey I, Maiuri P, et al. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J Virol. 2013;87(11):6469-6481. https://doi.org/10.1128/JVI.03456-12
Morita E, Suzuki Y. Membrane-associated flavivirus replication complex-its organization and regulation. Viruses. 2021;13(6):1060. https://doi.org/10.3390/v13061060
Överby AK, Popov VL, Niedrig M, Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J Virol. 2010;84(17):8470-8483. https://doi.org/10.1128/jvi.00176-10
Miorin L, Albornoz A, Baba MM, D’Agaro P, Marcello A. Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling. Virus Res. 2012;163(2):660-666. https://doi.org/10.1016/j.virusres.2011.11.020
Muller DA, Young PR. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res. 2013;98(2):192-208. https://doi.org/10.1016/j.antiviral.2013.03.008
Allison SL, Tao YJ, O'Riordain G, Mandl CW, Harrison SC, Heinz FX. Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus. J Virol. 2003;77(21):11357-11366. https://doi.org/10.1128/jvi.77.21.11357-11366.2003
Pfeffer M, Dobler G. Tick-borne encephalitis virus in dogs - is this an issue? Parasit Vectors. 2011;4(1):1-8. https://doi.org/10.1186/1756-3305-4-59
Rehacek J. Transovarial transmission of tick-borne encephalitis virus by ticks. Acta Virol. 1962:220-226.
Lindquist L. Chapter 25 - tick-borne encephalitis. Handb Clin Neurol. 2014;123:531-559.
Donoso-Mantke O, Karan LS, Růžek D. Tick-borne encephalitis virus: a general overview. Flavivirus Enceph. 2011. https://doi.org/10.5772/21912
Růžek D, Dobler G, Mantke OD. Tick-borne encephalitis: pathogenesis and clinical implications. Trav Med Infect Dis. 2010;8(4):223-232. https://doi.org/10.1016/j.tmaid.2010.06.004
Dorko E, Hockicko J, Rimárová K, et al. Milk outbreaks of tick-borne encephalitis in Slovakia, 2012-2016. Cent Eur J Publ Health. 2018;26(Suppl):S47-S50. https://doi.org/10.21101/cejph.a5272
Wallenhammar A, Lindqvist R, Asghar N, et al. Revealing new tick-borne encephalitis virus foci by screening antibodies in sheep milk. Parasit Vectors. 2020;13:1-12. https://doi.org/10.1186/s13071-020-04030-4
Caini S, Szomor K, Ferenczi E, et al. Tick-borne encephalitis transmitted by unpasteurised cow milk in Western Hungary, September to October 2011. Euro Surveill. 2012;17(12):20128. https://doi.org/10.2807/ese.17.12.20128-en
Brockmann SO, Oehme R, Buckenmaier T, et al. A cluster of two human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and cheese in Germany, May 2016. Euro Surveill. 2018;23(15). https://doi.org/10.2807/1560-7917.es.2018.23.15.17-00336
Kerbo N, Donchenko I, Kutsar K, Vasilenko V. Tickborne encephalitis outbreak in Estonia linked to raw goat milk, May-June 2005. Euro Surveill. 2005;10(25). https://doi.org/10.2807/esw.10.25.02730-en
Holzmann H, Aberle SW, Stiasny K, et al. Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerg Infect Dis. 2009;15(10):1671-1673. https://doi.org/10.3201/eid1510.090743
Balogh Z, Ferenczi E, Szeles K, et al. Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. J Virol Methods. 2010;163(2):481-485. https://doi.org/10.1016/j.jviromet.2009.10.003
Cisak E, Wójcik-Fatla A, Zając V, Sroka J, Buczek A, Dutkiewicz J, et al. Prevalence of tick-borne encephalitis virus (TBEV) in samples of raw milk taken randomly from cows, goats and sheep in eastern Poland. Ann Agric Environ Med. 2010;17:283-286.
Rónai Z, Egyed L. Survival of tick-borne encephalitis virus in goat cheese and milk. Food Environ Virol. 2020;12(3):264-268. https://doi.org/10.1007/s12560-020-09427-z
Chotiwan N, Rosendal E, Willekens SMA, et al. Type I interferon shapes brain distribution and tropism of tick-borne flavivirus. Nat Commun. 2023;14(1):2007. https://doi.org/10.1038/s41467-023-37698-0
Correale J, Villa A. Cellular elements of the blood-brain barrier. Neurochem Res. 2009;34(12):2067-2077. https://doi.org/10.1007/s11064-009-0081-y
Banks WA, Lynch JL, Price TO. Cytokines and the blood-brain barrier. In: The Neuroimmunological Basis of Behavior and Mental Disorders. Springer US; 2009:3-17. https://doi.org/10.1007/978-0-387-84851-8_1
Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37(1):26-32. https://doi.org/10.1016/j.nbd.2009.07.031
Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90(21):10061-10065. https://doi.org/10.1073/pnas.90.21.10061
Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One. 2011;6(5):e20472. https://doi.org/10.1371/journal.pone.0020472
McMinn PC. The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol. 1997;78(11):2711-2722. https://doi.org/10.1099/0022-1317-78-11-2711
Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol. 2005;64(6):506-512. https://doi.org/10.1093/jnen/64.6.506
Grinschgl G. Virus meningo-encephalitis in Austria. II. Clinical features, pathology, and diagnosis. Bull World Health Organ. 1955;12:535-564.
Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009;227(1):75-86. https://doi.org/10.1111/j.1600-065x.2008.00737.x
Weber F, Kochs G, Haller O. Inverse interference: how viruses fight the interferon system. Viral Immunol. 2004;17(4):498-515. https://doi.org/10.1089/vim.2004.17.498
Best SM, Morris KL, Shannon JG, et al. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol. 2005;79(20):12828-12839. https://doi.org/10.1128/jvi.79.20.12828-12839.2005
Muñ Oz-Jordá JL, Sá Nchez-Burgos GG, Laurent-Rolle M, García-Sastre A. Inhibition of Interferon Signaling by Dengue Virus. Vol 100; 2003. 2335168100. www.pnas.orgcgidoi10.1073pnas
Werme K, Wigerius M, Johansson M. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol. 2008;10(3):696-712. https://doi.org/10.1111/j.1462-5822.2007.01076.x
Carletti T, Zakaria MK, Faoro V, et al. Viral priming of cell intrinsic innate antiviral signaling by the unfolded protein response. Nat Commun. 2019;10(1):1-9. https://doi.org/10.1038/s41467-019-11663-2
Mellman I. Dendritic cells: master regulators of the immune response. Cancer Immunol Res. 2013;1(3):145-149. https://doi.org/10.1158/2326-6066.cir-13-0102
Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7(2):131-137. https://doi.org/10.1038/ni1303
Labuda M, Austyn JM, Zuffova E, et al. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219(2):357-366. https://doi.org/10.1006/viro.1996.0261
Robertson SJ, Lubick KJ, Freedman BA, Carmody AB, Best SM. Tick-borne flaviviruses antagonize both IRF-1 and type I IFN signaling to inhibit dendritic cell function. J Immunol. 2014;192(6):2744-2755. https://doi.org/10.4049/jimmunol.1302110
Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173-182. https://doi.org/10.1038/nri1785
Fredericksen BL, Gale M. West nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J Virol. 2006;80(6):2913-2923. https://doi.org/10.1128/jvi.80.6.2913-2923.2006
Jost S, Altfeld M. Control of human viral infections by natural killer cells. Annu Rev Immunol. 2013;31(1):163-194. https://doi.org/10.1146/annurev-immunol-032712-100001
Petitdemange C, Wauquier N, Rey J, Hervier B, Leroy E, Vieillard V. Control of acute dengue virus infection by natural killer cells. Front Immunol. 2014;5:209. https://doi.org/10.3389/fimmu.2014.00209
Pirogova NP, Novitskii VV, Mikhailova OV, et al. Cytogenetic disorders in peripheral blood lymphocytes of patients with febrile form of tick-borne encephalitis. Bull Exp Biol Med. 2004;137(1):61-63. https://doi.org/10.1023/b:bebm.0000024388.49008.ab
Blom K, Cuapio A, Sandberg JT, et al. Cell-mediated immune responses and immunopathogenesis of human tick-borne encephalitis virus-infection. Front Immunol. 2018;9:2174. https://doi.org/10.3389/fimmu.2018.02174
Haring JS, Badovinac VP, Harty JT. Inflaming the CD8+ T cell response. Immunity. 2006;25(1):19-29. https://doi.org/10.1016/j.immuni.2006.07.001
Kindberg E, Mickienė A, Ax C, et al. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197(2):266-269. https://doi.org/10.1086/524709
Michlmayr D, Bardina Sv, Rodriguez CA, Pletnev AG, Lim JK. Dual function of Ccr5 during Langat virus encephalitis: reduction in neutrophil-mediated central nervous system inflammation and increase in T cell-mediated viral clearance. J Immunol. 2016;196(11):4622-4631. https://doi.org/10.4049/jimmunol.1502452
Salat J, Mikulasek K, Larralde O, et al. Tick-borne encephalitis virus vaccines contain non-structural protein 1 antigen and may elicit NS1-specific antibody responses in vaccinated individuals. Vaccines (Basel). 2020;8:81. https://doi.org/10.3390/vaccines8010081
Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine. 2013;31(3):461-471. https://doi.org/10.1016/j.vaccine.2012.11.015
Gelpi E, Preusser M, Laggner U, et al. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol. 2006;12(4):322-327. https://doi.org/10.1080/13550280600848746
Růžek D, Salát J, Palus M, et al. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology. 2009;384:1-6. https://doi.org/10.1016/j.virol.2008.11.023
TomažIč J, Ihan A. Flow cytometric analysis of lymphocytes in cerebrospinal fluid in patients with tick-borne encephalitis. Acta Neurol Scand. 1997;95(1):29-33. https://doi.org/10.1111/j.1600-0404.1997.tb00064.x
Kaiser R, Holzmann H. Laboratory findings in tick-borne encephalitis - correlation with clinical outcome. Infection. 2000;28(2):78-84. https://doi.org/10.1007/s150100050051
Maximova OA, Ward JM, Asher DM, et al. Comparative neuropathogenesis and neurovirulence of attenuated flaviviruses in nonhuman primates. J Virol. 2008;82(11):5255-5268. https://doi.org/10.1128/jvi.00172-08
Kaiser R. Tick-borne encephalitis: clinical findings and prognosis in adults. Wien Med Wochenschr. 2012;162(11-12):239-243. https://doi.org/10.1007/s10354-012-0105-0
Kaiser R. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994-98. Brain. 1999;122(11):2067-2078. https://doi.org/10.1093/brain/122.11.2067
Kaiser R. Tick-borne Encephalitis-still a serious disease? Wien Med Wochenschr. 2012;162(11-12):229. https://doi.org/10.1007/s10354-012-0119-7
Chiffi G, Grandgirard D, Sendi P, Dietmann A, Bassetti CLA, Leib SL. Sleep-wake and circadian disorders after tick-borne encephalitis. Microorganisms. 2022;10(2):304. https://doi.org/10.3390/microorganisms10020304
Saksida A, Duh D, Lotrič-Furlan S, Strle F, Petrovec M, Avšič-Županc T. The importance of tick-borne encephalitis virus RNA detection for early differential diagnosis of tick-borne encephalitis. J Clin Virol. 2005;33(4):331-335. https://doi.org/10.1016/j.jcv.2004.07.014
Euringer K, Girl P, Kaier K, et al. Tick-borne encephalitis virus IgG antibody surveillance: vaccination- and infection-induced seroprevalences, south-western Germany, 2021. Euro Surveill. 2023;28(12):2200408. https://doi.org/10.2807/1560-7917.es.2023.28.12.2200408
Dobler G, Kaier K, Hehn P, Böhmer M, Kreusch T, Borde J. Tick-borne encephalitis virus vaccination breakthrough infections in Germany: a retrospective analysis from 2001 to 2018. Clin Microbiol Infection. 2020;26(8):1090.e7-1090.e13. https://doi.org/10.1016/j.cmi.2019.12.001
Holzmann H. Diagnosis of tick-borne encephalitis. Vaccine. 2003;21:S36-S40. https://doi.org/10.1016/s0264-410x(02)00819-8
Kaiser R. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994-98. A prospective study of 656 patients. Brain. 1999;122(11):2067-2078. https://doi.org/10.1093/brain/122.11.2067
Pöschl P, Kleiter I, Grubwinkler S, et al. Severe tick-borne encephalomyelitis with lack of cerebrospinal fluid pleocytosis. Fortschritte Neurol Psychiatr. 2009;77(10):591-593. https://doi.org/10.1055/s-0028-1109768
Dobler G. Diagnosis. In: Dobler G, Erber W, Bröker M, Schmitt HJ, eds. The TBE Book. Vol 181-191. Global Health Press; 2019. https://doi.org/10.33442/978-981-14-0914-1_10
Pichler A, Sellner J, Harutyunyan G, et al. Magnetic resonance imaging and clinical findings in adults with tick-borne encephalitis. J Neurol Sci. 2017;375:266-269. https://doi.org/10.1016/j.jns.2017.02.003
Kaiser R. Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int J Med Microbiol. 2002;291:58-61. https://doi.org/10.1016/s1438-4221(02)80012-1
Albinsson B, Rönnberg B, Vene S, Lundkvist Å. Antibody responses to tick-borne encephalitis virus non-structural protein 1 and whole virus antigen-a new tool in the assessment of suspected vaccine failure patients. Infect Ecol Epidemiol. 2019;9:1696132. https://doi.org/10.1080/20008686.2019.1696132
Albinsson B, Vene S, Rombo L, Blomberg J, Lundkvist Å, Rönnberg B. Distinction between serological responses following tick-borne encephalitis virus (TBEV) infection vs vaccination, Sweden 2017. Euro Surveill. 2018;23(3). https://doi.org/10.2807/1560-7917.es.2018.23.3.17-00838
Girl P, Bestehorn-Willmann M, Zange S, Borde JP, Dobler G, von Buttlar H. Tick-borne encephalitis virus nonstructural protein 1 IgG enzyme-linked immunosorbent assay for differentiating infection versus vaccination antibody responses. J Clin Microbiol. 2020;58(4). https://doi.org/10.1128/jcm.01783-19
Stiasny K, Leitner A, Holzmann H, Heinz FX. Dynamics and extent of non-structural protein 1-antibody responses in tick-borne encephalitis vaccination breakthroughs and unvaccinated patients. Viruses. 2021;13(6):1007. https://doi.org/10.3390/v13061007
Salat J, Strakova P, Ruzek D. Dynamics of whole virus and non-structural protein 1 (NS1) IgG response in mice immunized with two commercial tick-borne encephalitis vaccines. Vaccines (Basel). 2022;10(7):1001. https://doi.org/10.3390/vaccines10071001
Christie S, Chan V, Mollayeva T, Colantonio A. Systematic review of rehabilitation intervention outcomes of adult and paediatric patients with infectious encephalitis. BMJ Open. 2018;8(5):e015928. https://doi.org/10.1136/bmjopen-2017-015928
Czupryna P, Grygorczuk S, Krawczuk K, et al. Sequelae of tick-borne encephalitis in retrospective analysis of 1072 patients. Epidemiol Infect. 2018;146(13):1663-1670. https://doi.org/10.1017/s0950268818002005
Crotty S, Cameron CE, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA. 2001;98(12):6895-6900. https://doi.org/10.1073/pnas.111085598
Eyer L, Kondo H, Zouharova D, et al. Escape of tick-borne flavivirus from 2’ -C-methylated nucleoside antivirals is mediated by a single conservative mutation in NS5 that has a dramatic effect on viral fitness. J Virol. 2017;91(21):010288. https://doi.org/10.1128/jvi.01028-17
Taylor R, Kotian P, Warren T, et al. BCX4430 - a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Publ Health. 2016;9(3):220-226. https://doi.org/10.1016/j.jiph.2016.04.002
Cannalire R, Tarantino D, Piorkowski G, et al. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antivir Res. 2019;167:6-12. https://doi.org/10.1016/j.antiviral.2019.03.004
Bonotto RM, Bonì F, Milani M, et al. Virucidal activity of the pyridobenzothiazolone derivative HeE1-17Y against enveloped RNA viruses. Viruses. 2022;14(6):1157. https://doi.org/10.3390/v14061157
Agudelo M, Palus M, Keeffe JR, et al. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J Exp Med. 2021;218(5). https://doi.org/10.1084/jem.20210236
Lehrer AT, Holbrook MR. Tick-borne encephalitis vaccines. J Bioterror Biodef. 2011;3(01). https://doi.org/10.4172/2157-2526.s1-003
Chrdle A, Chmelík V, Růžek D. Tick-borne encephalitis: what travelers should know when visiting an endemic country Tick-borne encephalitis: what travelers should know when visiting an endemic country. Hum Vaccin Immunother. 2016;12(10):2694-2699. https://doi.org/10.1080/21645515.2016.1218098
Schmidt AJ, Altpeter E, Graf S, Steffen R. Tick-borne encephalitis (TBE) in Switzerland: does the prolongation of vaccine booster intervals result in an increased risk of breakthroughs? J Trav Med. 2022;29(2). https://doi.org/10.1093/jtm/taab158
Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 2007;25(43):7559-7567. https://doi.org/10.1016/j.vaccine.2007.08.024
Baroutsou V, Zens KD, Sinniger P, Fehr J, Lang P. Analysis of Tick-borne Encephalitis vaccination coverage and compliance in adults in Switzerland, 2018. Vaccine. 2020;38(49):7825-7833. https://doi.org/10.1016/j.vaccine.2020.10.022
Beran J, Xie F, Zent O. Five year follow-up after a first booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates long-term antibody persistence and safety. Vaccine. 2014;32(34):4275-4280. https://doi.org/10.1016/j.vaccine.2014.06.028
Loew-Baselli A, Poellabauer EM, Pavlova BG, et al. Prevention of tick-borne encephalitis by FSME-IMMUN® vaccines: review of a clinical development programme. Vaccine. 2011;29(43):7307-7319. https://doi.org/10.1016/j.vaccine.2011.07.089
Loew-Baselli A, Konior R, Pavlova B, et al. Safety and immunogenicity of the modified adult tick-borne encephalitis vaccine FSME-IMMUN®: results of two large phase 3 clinical studies. Vaccine. 2006;24:5256-5263. https://doi.org/10.1016/j.vaccine.2006.03.061
Ehrlich HJ, Pavlova BG, Fritsch S, et al. Randomized, phase II dose-finding studies of a modified tick-borne encephalitis vaccine: evaluation of safety and immunogenicity. Vaccine. 2003;22(2):217-223. https://doi.org/10.1016/s0264-410x(03)00563-2
Lotrič-Furlan S, Bogovič P, Avšič-Županc T, Jelovšek M, Lusa L, Strle F. Tick-borne encephalitis in patients vaccinated against this disease. J Intern Med. 2017;282(2):142-155. https://doi.org/10.1111/joim.12625
Sendi P, Hirzel C, Pfister S, et al. Fatal outcome of European tick-borne encephalitis after vaccine failure. Front Neurol. 2017;8:119. https://doi.org/10.3389/fneur.2017.00119
Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371(9627):1861-1871. https://doi.org/10.1016/s0140-6736(08)60800-4
Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16(8):565-586. https://doi.org/10.1038/nrd.2017.33