Three-dimensional mapping of tick-borne encephalitis virus distribution in the mouse brain using a newly engineered TurboGFP reporter virus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40743437
PubMed Central
PMC12442459
DOI
10.1080/22221751.2025.2542246
Knihovny.cz E-zdroje
- Klíčová slova
- TBEV, light-sheet microscopy, neurotropism, organotypic cerebellar slices, reporter viruses, tissue clearing,
- MeSH
- klíšťová encefalitida * virologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- luminescentní proteiny genetika metabolismus MeSH
- mozek * virologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- replikace viru MeSH
- reportérové geny MeSH
- tropismus virů MeSH
- viry klíšťové encefalitidy * genetika fyziologie MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- luminescentní proteiny MeSH
Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus that invades the central nervous system, leading to severe neurological manifestations. In this study, we developed a reporter virus comprising TurboGFP-expressing TBEV (tGFP-TBEV) as a versatile tool for advancing TBEV research. The tGFP-TBEV facilitates quantitative measurement of viral replication, enables precise tracking of individual infected cells, and supports high-throughput screening of potential antiviral compounds and virus-neutralization assays. Furthermore, tGFP-TBEV proved effective as a model for studying TBEV infection in rat organotypic cerebellar slices cultured ex vivo and for visualizing TBEV infection in the mouse brain. Using tissue-clearing protocols and light-sheet fluorescence microscopy, we achieved high-resolution, three-dimensional mapping of the TBEV distribution in the mouse brain. This analysis uncovered distinct patterns of TBEV tropism, with infections concentrated in regions associated with neurogenesis, olfactory processing, and specific neuroanatomical pathways. The ability to visualize infection at both the cellular and whole-organ level provides a new tool for detailed investigations into viral tropism, replication, and interactions with host tissues, paving the way for deeper insights into TBEV biology and the pathogenesis of tick-borne encephalitis.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Graduate School for Cellular and Biomedical Sciences University of Bern Bern Switzerland
Institute for Infectious Diseases University of Bern Bern Switzerland
Laboratory of Emerging Viral Diseases Veterinary Research Institute Brno Czech Republic
Multidisciplinary Center for Infectious Diseases University of Bern Bern Switzerland
Zobrazit více v PubMed
Postler TS, Beer M, Blitvich BJ, et al. Renaming of the genus flavivirus to orthoflavivirus and extension of binomial species names within the family flaviviridae. Arch Virol. 2023 Aug 10;168(9):224. PubMed
Chiffi G, Grandgirard D, Leib SL, et al. Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev Med Virol. 2023 Jul 1;33(5):e2470. PubMed
Ruzek D, Avšič Županc T, Borde J, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019 Apr;164:23–51. PubMed
Růžek D, Dobler G, Donoso Mantke O.. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med Infect Dis. 2010 Jul;8(4):223–232. PubMed
Bogovic P, Lotric-Furlan S, Strle F.. What tick-borne encephalitis may look like: clinical signs and symptoms. Travel Med Infect Dis. 2010 Jul;8(4):246–250. PubMed
Bogovic P, Strle F.. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015 May 16;3(5):430–441. PubMed PMC
Chiffi G, Grandgirard D, Leib SL, et al. Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev Med Virol. 2023 Sep;33(5):e2470. PubMed
Chiffi G, Grandgirard D, Stöckli S, et al. Tick-borne encephalitis affects sleep-wake behavior and locomotion in infant rats. Cell Biosci. 2022 Aug 2;12(1):121. PubMed PMC
Amicizia D, Domnich A, Panatto D, et al. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccin Immunother. 2013 May;9(5):1163–1171. PubMed PMC
Chotiwan N, Rosendal E, Willekens SMA, et al. Type I interferon shapes brain distribution and tropism of tick-borne flavivirus. Nat Commun. 2023 Apr 10;14(1):2007. PubMed PMC
Mandl CW. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 2005 Aug;111(2):161–174. PubMed
Ruzek D. Animal models of tick-borne encephalitis for preclinical antiviral research. Annu Rep Med Chem; 2022 Jan 1;58:243–256.
Maffioli C, Grandgirard D, Engler O, et al. A tick-borne encephalitis model in infant rats infected with langat virus. J Neuropathol Exp Neurol. 2014 Dec;73(12):1107–1115. PubMed
Berankova M, Holoubek J, Hönig V, et al. Genotype-driven sensitivity of mice to tick-borne encephalitis virus correlates with differential host responses in peripheral macrophages and brain. J Neuroinflammation. 2025 Jan 28;22(1):22. PubMed PMC
Palus M, Vojtíšková J, Salát J, et al. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation. 2013 Jun 27;10:77. PubMed PMC
Kobayashi S, Fukuda Y, Yoshii K, et al. Development of recombinant west Nile virus expressing mCherry reporter protein. J Virol Methods. 2023 Jul;317:114744. PubMed
Yin C, Yang P, Xiao Q, et al. Novel antiviral discoveries for Japanese encephalitis virus infections through reporter virus-based high-throughput screening. J Med Virol. 2024 Jan;96(1):e29382. PubMed
Xu Y, Vertrees D, He Y, et al. Nanoluciferase reporter Zika viruses as tools for assessing infection kinetics and antibody potency. Viruses. 2023 Oct 31;15(11):2190. PubMed PMC
Li C, Chen X, Hu J, et al. A recombinant genotype I Japanese encephalitis virus expressing a gaussia luciferase gene for antiviral drug screening assay and neutralizing antibodies detection. Int J Mol Sci. 2022 Dec 8;23(24):15548. PubMed PMC
Dong HL, Wang HJ, Liu ZY, et al. Visualization of yellow fever virus infection in mice using a bioluminescent reporter virus. Emerg Microbes Infect. 2021 Dec;10(1):1739–1750. PubMed PMC
Baker C, Shi PY.. Construction of stable reporter flaviviruses and their applications. Viruses. 2020 Sep 25;12(10):1082. PubMed PMC
Sanchez-Velazquez R, de Lorenzo G, Tandavanitj R, et al. Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Res. 2020 Nov;183:104939. PubMed PMC
Zhang ZR, Zhang HQ, Li XD, et al. Generation and characterization of Japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antiviral Res. 2020 Oct;182:104884. PubMed PMC
Yun SI, Song BH, Woolley ME, et al. Development, characterization, and application of Two reporter-expressing recombinant Zika viruses. Viruses. 2020 May 22;12(5):572. PubMed PMC
Tamura T, Igarashi M, Enkhbold B, et al. In vivo dynamics of reporter flaviviridae viruses. J Virol. 2019 Nov 15;93(22):e01191-19. PubMed PMC
Suphatrakul A, Duangchinda T, Jupatanakul N, et al. Multi-color fluorescent reporter dengue viruses with improved stability for analysis of a multi-virus infection. PLoS One. 2018;13(3):e0194399. PubMed PMC
Li XF, Li XD, Deng CL, et al. Visualization of a neurotropic flavivirus infection in mouse reveals unique viscerotropism controlled by host type I interferon signaling. Theranostics. 2017;7(4):912–925. PubMed PMC
Pierson TC, Sánchez MD, Puffer BA, et al. A rapid and quantitative assay for measuring antibody-mediated neutralization of west Nile virus infection. Virology. 2006 Mar 1;346(1):53–65. PubMed
Zou G, Xu HY, Qing M, et al. Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antiviral Res. 2011 Jul;91(1):11–19. PubMed
Schoggins JW, Dorner M, Feulner M, et al. Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14610–5. PubMed PMC
Haviernik J, Eyer L, Yoshii K, et al. Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antiviral Res. 2021 Jan;185:104968. PubMed
Kevély Á, Prančlová V, Sláviková M, et al. Fitness of mCherry reporter tick-borne encephalitis virus in tick experimental models. Viruses. 2022 Nov 29;14(12):2673. PubMed PMC
Lenz N, Engler O, Grandgirard D, et al. Evaluation of antivirals against tick-borne encephalitis virus in organotypic brain slices of rat cerebellum. PLoS One. 2018;13(10):e0205294. PubMed PMC
Qi Y, Yu T, Xu J, et al. Fdisco: advanced solvent-based clearing method for imaging whole organs. Sci Adv. 2019 Jan;5(1):eaau8355. PubMed PMC
Kum DB, Mishra N, Boudewijns R, et al. A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. NPJ Vaccines. 2018;3:56. PubMed PMC
Li LH, Chiu W, Huang YA, et al. Multiplexed multicolor antiviral assay amenable for high-throughput research. Nat Commun. 2024 Jan 2;15(1):42. PubMed PMC
Mishra N, Boudewijns R, Schmid MA, et al. A chimeric Japanese encephalitis vaccine protects against lethal yellow fever virus infection without inducing neutralizing antibodies. mBio. 2020 Apr 7;11(2):e02494-19. PubMed PMC
Madrid D, Porterfield AT, S J.. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ. 1969;40(1):113–121. PubMed PMC
Eyer L, Valdés JJ, Gil VA, et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother. 2015 Sep;59(9):5483–5493. PubMed PMC
Bolte S, Cordelières FP.. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006 Dec;224(Pt 3):213–232. PubMed
Aubry F, Nougairède A, de Fabritus L, et al. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J Gen Virol. 2014 Nov;95(Pt 11):2462–2467. PubMed PMC
Eyer L, Nougairède A, Uhlířová M, et al. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor galidesivir (BCX4430) and also attenuates the virus for mice. J Virol. 2019 Aug 15;93(16):e00367-19. PubMed PMC
Tamura T, Fukuhara T, Uchida T, et al. Characterization of recombinant flaviviridae viruses possessing a small reporter Tag. J Virol. 2018 Jan 15;92(2):e01582-17. PubMed PMC
Evdokimov AG, Pokross ME, Egorov NS, et al. Structural basis for the fast maturation of arthropoda green fluorescent protein. EMBO Rep. 2006 Oct;7(10):1006–1012. PubMed PMC
Ávila-Pérez G, Nogales A, Martín V, et al. Reverse genetic approaches for the generation of recombinant Zika virus. Viruses. 2018 Oct 31;10(11):597. PubMed PMC
Miao Y, Zheng Y, Wang T, et al. Breast milk transmission and involvement of mammary glands in tick-borne flavivirus infected mice. J Virol. 2024 Mar 19;98(3):e0170923. PubMed PMC
Gelpi E, Preusser M, Garzuly F, et al. Visualization of central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol. 2005 Jun;64(6):506–512. PubMed
Kurhade C, Zegenhagen L, Weber E, et al. Type I interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1. J Neuroinflammation. 2016 Jan 27;13:22. PubMed PMC
Alvarez-Buylla A, Herrera DG, Wichterle H.. The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res. 2000;127:1–11. PubMed
Stolp HB, Molnár Z.. Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci. 2015;9:20. PubMed PMC
Garcez PP, Loiola EC, Madeiro da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016 May 13;352(6287):816–818. PubMed
Tang H, Hammack C, Ogden SC, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016 May 5;18(5):587–590. PubMed PMC