TBEV
Dotaz
Zobrazit nápovědu
Categorization systems for tick-borne encephalitis virus (TBEV) infection lack consistency in classifying disease severity. To evaluate the need for a standard, consensus-based categorisation system for TBEV infection across subtypes, we gathered an expert panel of clinicians and scientists with diverse expertise in TBEV infection. Consensus was sought using the Delphi technique, which consisted of 2 web-based survey questionnaires and a final, virtual, consensus-building exercise. Ten panellists representing 8 European countries participated in the Delphi exercise, with specialities in neurology, infectious disease, paediatrics, immunology, virology, and epidemiology. Panellists reached unanimous consensus on the need for a standardised, international categorisation system to capture both clinical presentation and severity of TBEV infection. Ideally, such a system should be feasible for use at bedside, be clear and easy to understand, and capture both the acute and follow-up phases of TBEV infection. Areas requiring further discussion were (1) the timepoints at which assessments should be made and (2) whether there should be a separate system for children. This Delphi panel study found that a critical gap persists in the absence of a feasible and practical classification system for TBEV infection. Specifically, the findings of our Delphi exercise highlight the need for the development of a user-friendly classification system that captures the acute and follow-up (i.e., outcome) phases of TBEV infection and optimally reflects both clinical presentation and severity. Development of a clinical categorisation system will enhance patient care and foster comparability among studies, thereby supporting treatment development, refining vaccine strategies, and fortifying public health surveillance.
- MeSH
- delfská metoda * MeSH
- klíšťová encefalitida * epidemiologie virologie diagnóza MeSH
- konsensus MeSH
- lidé MeSH
- viry klíšťové encefalitidy * klasifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Tick-borne encephalitis virus (TBEV) is a significant threat to human health. The virus causes potentially fatal disease of the central nervous system (CNS), for which no treatments are available. TBEV infected individuals display a wide spectrum of neuronal disease, the determinants of which are undefined. Changes to host metabolism and virus-induced immunity have been postulated to contribute to the neuronal damage observed in infected individuals. In this study, we evaluated the cytokine, chemokine, and metabolic alterations in the cerebrospinal fluid (CSF) of symptomatic patients infected with TBEV presenting with meningitis or encephalitis. Our aim was to investigate the host immune and metabolic responses associated with specific TBEV infectious outcomes. METHODS: CSF samples of patients with meningitis (n = 27) or encephalitis (n = 25) were obtained upon consent from individuals hospitalised with confirmed TBEV infection in Brno. CSF from uninfected control patients was also collected for comparison (n = 12). A multiplex bead-based system was used to measure the levels of pro-inflammatory cytokines and chemokines. Untargeted metabolomics followed by bioinformatics and integrative omics were used to profile the levels of metabolites in the CSF. Human motor neurons (hMNs) were differentiated from induced pluripotent stem cells (iPSCs) and infected with the highly pathogenic TBEV-Hypr strain to profile the role(s) of identified metabolites during the virus lifecycle. Virus infection was quantified via plaque assay. RESULTS: Significant differences in proinflammatory cytokines (IFN-α2, TSLP, IL-1α, IL-1β, GM-CSF, IL-12p40, IL-15, and IL-18) and chemokines (IL-8, CCL20, and CXCL11) were detected between neurological-TBEV and control patients. A total of 32 CSF metabolites differed in TBE patients with meningitis and encephalitis. CSF S-Adenosylmethionine (SAM), Fructose 1,6-bisphosphate (FBP1) and Phosphoenolpyruvic acid (PEP) levels were 2.4-fold (range ≥ 2.3-≥3.2) higher in encephalitis patients compared to the meningitis group. CSF urocanic acid levels were significantly lower in patients with encephalitis compared to those with meningitis (p = 0.012209). Follow-up analyses showed fluctuations in the levels of O-phosphoethanolamine, succinic acid, and L-proline in the encephalitis group, and pyruvic acid in the meningitis group. TBEV-infection of hMNs increased the production of SAM, FBP1 and PEP in a time-dependent manner. Depletion of the metabolites with characterised pharmacological inhibitors led to a concentration-dependent attenuation of virus growth, validating the identified changes as key mediators of TBEV infection. CONCLUSIONS: Our findings reveal that the neurological disease outcome of TBEV infection is associated with specific and dynamic metabolic signatures in the cerebrospinal fluid. We describe a new in vitro model for in-depth studies of TBEV-induced neuropathogenesis, in which the depletion of identified metabolites limits virus infection. Collectively, this reveals new biomarkers that can differentiate and predict TBEV-associated neurological disease. Additionally, we have identified novel therapeutic targets with the potential to significantly improve patient outcomes and deepen our understanding of TBEV pathogenesis.
- MeSH
- cytokiny mozkomíšní mok MeSH
- dospělí MeSH
- klíšťová encefalitida * mozkomíšní mok metabolismus MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolom * fyziologie MeSH
- metabolomika MeSH
- mladý dospělý MeSH
- neurony * metabolismus virologie MeSH
- senioři MeSH
- viry klíšťové encefalitidy * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The aim of the study was to evaluate the efficiency of molecular diagnostics of tick-borne encephalitis (TBE) and to correlate viral RNA (vRNA) detection with the clinical and laboratory data. METHODS: Clinical samples from 1125 patients from South Bohemia, Czech Republic, a highly endemic TBE region, were screened for TBE virus (TBEV) RNA by RT-qPCR. Samples included blood, serum, cerebrospinal fluid (CSF), and urine. RESULTS: TBEV RNA was detected in 14 patients with clinically proven TBE. TBEV RNA was most frequently detected in sera during early infection (11/37 patients tested, 29.7%) but decreased with rising IgG antibody response (3/228, 1.3%). Detection in CSF and urine was infrequent (1/30, 3.3% and 1/52, 1.9%, respectively). Additionally, five patients initially not diagnosed with TBE were retrospectively found to have TBEV RNA in serum, indicating possible underdiagnosis, particularly in mild or atypical presentations. The study also highlighted the diagnostic challenge of an immunocompromised patient whose delayed antibody response hindered timely diagnosis. In such cases, RT-qPCR could significantly shorten the diagnostic timeline. CONCLUSIONS: These findings underscore the value of early RNA detection in improving the diagnosis of TBE and may in the future facilitate the early administration of potential treatment, thereby improving patient outcomes.
- MeSH
- diagnostické techniky molekulární metody MeSH
- dítě MeSH
- dospělí MeSH
- imunoglobulin G krev MeSH
- klíšťová encefalitida * diagnóza virologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- protilátky virové krev MeSH
- RNA virová * krev mozkomíšní mok izolace a purifikace MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- viry klíšťové encefalitidy * izolace a purifikace genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Tick-borne encephalitis virus (TBEV) infection can manifest as disease of variable severity, ranging from subclinical infection to severe disease with neurological involvement and potentially fatal outcome. Although TBE is recognized as a major public health problem in Europe, the true burden of disease is potentially underestimated. Here, we investigated TBEV-specific antibody prevalence, infection incidence, and seroreversion and antibody decline rates in a prospective Swiss healthcare worker (HCW) cohort. We screened serum samples from 1444 HCWs between June and October 2020, and from a subset again between August and September 2021, using a TBEV envelope (E) protein IgG ELISA. Positive samples underwent further analysis with a TBEV non-structural protein 1 (NS1) IgG ELISA, and seroconversions in unvaccinated individuals were confirmed by seroneutralization testing. Questionnaire data were used to determine vaccination status and risk factors. TBEV E protein-specific IgG prevalence was 72.1% (95% CI 68.2-75.7%) in TBEV-vaccinated and 6% (95% CI 4.4-7.8%) in unvaccinated individuals. The estimated annual incidence of infection was 735/100,000. Age was the only factor significantly associated with seroprevalence. The seroreversion rate in unvaccinated individuals was 30.3% within one year, which is almost ten times higher than in vaccinated individuals (3.4%, annual decline rate 8.0%). NS1-specific IgG antibodies were six times more common in vaccinated than unvaccinated HCWs. In conclusion, undetected TBEV infections are common, and infection incidence is much higher than reported clinical cases. Individuals with abortive infections have high antibody decline and seroreversion rates. Whether lifelong protection is conferred and by which immune subsets remain unclear.
- MeSH
- dospělí MeSH
- imunoglobulin G krev MeSH
- incidence MeSH
- klíšťová encefalitida * epidemiologie imunologie krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- protilátky virové * krev MeSH
- senioři MeSH
- séroepidemiologické studie MeSH
- viry klíšťové encefalitidy * imunologie MeSH
- zdravotnický personál statistika a číselné údaje MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Švýcarsko MeSH
Tick-borne encephalitis virus (TBEV) is an emerging pathogen that initially causes flu-like symptoms and can progress to central nervous system (CNS) infections. Tick-borne encephalitis (TBE) is an endemic disease in southern coastal counties with regular human cases, while the causative agent, TBEV, is prevalent in ticks in most of the coastal regions of Norway. This study was aimed to understand TBEV infection status across Norway including both TBE endemic and non-endemic areas. For this, we analyzed a total of 1940 residual serum samples from 19 counties of Norway (as of 2016). The samples were initially screened by ELISA, followed by virus neutralization tests for TBEV confirmation. We found a similar TBEV seroprevalence of 1.7% in TBE endemic and 1.6% in non-endemic areas. Since TBE cases are only reported from endemic regions, our findings suggest a potential subclinical or asymptomatic infection and underdiagnosis in non-endemic areas. Notably, only 43% of the ELISA-positive samples were confirmed by virus neutralization tests indicating that not all ELISA positives are true TBEV infections. Additionally, 137 samples of patients presenting with symptoms of CNS infections from a non-endemic area were included. Of these samples, 11 ELISA-positive samples were analyzed for cross-reactivity among flaviviruses. Cross-reactivity was detected with Dengue virus, West Nile Virus, and non-specific reactions. This underscores the importance of using multiple diagnostic tests to confirm TBEV infections. None of the patients with CNS infection was found to be TBE positive, and in the whole cohort, we found a low TBEV seroprevalence of 0.7%.
- MeSH
- dítě MeSH
- dospělí MeSH
- ELISA MeSH
- klíšťová encefalitida * krev diagnóza epidemiologie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neutralizační testy MeSH
- předškolní dítě MeSH
- protilátky virové * krev MeSH
- retrospektivní studie MeSH
- senzitivita a specificita MeSH
- séroepidemiologické studie MeSH
- viry klíšťové encefalitidy MeSH
- zkřížené reakce MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH
BACKGROUND: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS: TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS: Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS: Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.
- MeSH
- cytokiny * metabolismus genetika MeSH
- genotyp MeSH
- klíšťová encefalitida * imunologie virologie genetika MeSH
- makrofágy * imunologie virologie MeSH
- mozek * virologie imunologie MeSH
- myši inbrední BALB C * MeSH
- myši MeSH
- viry klíšťové encefalitidy * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection. Mice were intradermally infected by TBEV with or without Iristatin and the viral multiplication was determined in skin and brain tissues by RT-PCR two and 5 days after infection. The viral RNA was detected in both intervals in skin and increased by time. The application of Iristatin caused a reduction in viral RNA in skin but not in the brain of infected mice 5 days post-infection. Moreover, anti-viral effect of Iristatin on skin was accompanied by a significant decline of interferon-stimulated gene 15 gene expression. The effect of Iristatin on TBEV replication was tested also in vitro in primary macrophages and dendritic cells; however, no changes were observed suggesting no direct interference of Iristatin with virus replication. Still, the Iristatin caused a suppression of Erk1/2 phosphorylation in TBEV-infected dendritic cells and had the anti-apoptotic effect. This is the first report showing that a tick cystatin decreases the viral RNA in the host skin, likely indirectly through creating skin environment that is less supportive for TBEV replication. Assuming, that viral RNA reflects the amount of infectious virus, decline of TBEV in host skin could influence the tick biology or virus transmission during cofeeding.
- MeSH
- antivirové látky farmakologie MeSH
- cystatiny farmakologie metabolismus genetika MeSH
- dendritické buňky virologie účinky léků MeSH
- klíště * virologie účinky léků MeSH
- klíšťová encefalitida * virologie MeSH
- kůže * virologie MeSH
- makrofágy virologie MeSH
- mozek virologie metabolismus MeSH
- myši MeSH
- replikace viru * účinky léků MeSH
- RNA virová genetika MeSH
- slinné cystatiny metabolismus MeSH
- viry klíšťové encefalitidy * účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Viral infection may represent a stress condition to the host cell. Cells react to it by triggering the defence programme to restore homeostasis and these events may in turn impact the viral replication. The knowledge about tick-borne encephalitis virus (TBEV) infection-associated stress is limited. Here we investigated the interplay between TBEV infection and stress pathways in PMJ2-R mouse macrophage cell line, as macrophages are the target cells in early phases of TBEV infection. First, to determine how stress influences TBEV replication, the effect of stress inducers H2O2 and tunicamycin (TM) was tested. Viral multiplication was decreased in the presence of both stress inducers suggesting that the stress and cellular stress responses restrict the virus replication. Second, we investigated the induction of oxidative stress and endoplasmic reticulum (ER) stress upon TBEV infection. The level of oxidative stress was interrogated by measuring the reactive oxygen species (ROS). ROS were intermittently increased in infected cells at 12 hpi and at 72 hpi. As mitochondrial dysfunction may result in increased ROS level, we evaluated the mitochondrial homeostasis by measuring the mitochondrial membrane potential (MMP) and found that TBEV infection induced the hyperpolarization of MMP. Moreover, a transient increase of gene expression of stress-induced antioxidative enzymes, like p62, Gclm and Hmox1, was detected. Next, we evaluated the ER stress upon TBEV infection by analysing unfolded protein responses (UPR). We found that infection induced gene expression of two general sensors BiP and CHOP and activated the IRE1 pathway of UPR. Finally, since the natural transmission route of TBEV from its tick vector to the host is mediated via tick saliva, the impact of tick saliva from Ixodes ricinus on stress pathways in TBEV-infected cells was tested. We observed only marginal potentiation of UPR pathway. In conclusion, we found that TBEV infection of PMJ2-R cells elicits the changes in redox balance and triggers cellular stress defences, including antioxidant responses and the IRE1 pathway of UPR. Importantly, our results revealed the negative effect of stress-evoked events on TBEV replication and only marginal impact of tick saliva on stress cellular pathways.
- MeSH
- buněčné linie MeSH
- klíšťová encefalitida * MeSH
- myši MeSH
- peroxid vodíku metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- replikace viru MeSH
- viry klíšťové encefalitidy * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis (TBE) virus (TBEV) is transmitted to humans via tick bites. Infection is benign in >90% of the cases but can cause mild (<5%), moderate (<4%), or severe (<1%) encephalitis. We show here that ∼10% of patients hospitalized for severe TBE in cohorts from Austria, Czech Republic, and France carry auto-Abs neutralizing IFN-α2, -β, and/or -ω at the onset of disease, contrasting with only ∼1% of patients with moderate and mild TBE. These auto-Abs were found in two of eight patients who died and none of 13 with silent infection. The odds ratios (OR) for severe TBE in individuals with these auto-Abs relative to those without them in the general population were 4.9 (95% CI: 1.5-15.9, P < 0.0001) for the neutralization of only 100 pg/ml IFN-α2 and/or -ω, and 20.8 (95% CI: 4.5-97.4, P < 0.0001) for the neutralization of 10 ng/ml IFN-α2 and -ω. Auto-Abs neutralizing type I IFNs accounted for ∼10% of severe TBE cases in these three European cohorts.
- MeSH
- autoprotilátky * imunologie MeSH
- dospělí MeSH
- interferon typ I * imunologie MeSH
- klíšťová encefalitida * imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- neutralizující protilátky * imunologie MeSH
- senioři MeSH
- viry klíšťové encefalitidy imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Rakousko MeSH
Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.
- MeSH
- chemokin CCL5 * metabolismus MeSH
- chemokin CXCL10 * metabolismus MeSH
- cytokiny metabolismus MeSH
- klíšťová encefalitida * virologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mozek * virologie metabolismus patologie MeSH
- pericyty * virologie metabolismus MeSH
- replikace viru MeSH
- viry klíšťové encefalitidy * fyziologie patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH