Fitness of mCherry Reporter Tick-Borne Encephalitis Virus in Tick Experimental Models
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36560677
PubMed Central
PMC9781894
DOI
10.3390/v14122673
PII: v14122673
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, TBEV, mCherry reporter, tick cell culture, tick-borne encephalitis virus, ticks, viral reverse genetics,
- MeSH
- buněčné linie MeSH
- klíště * MeSH
- klíšťová encefalitida * MeSH
- polymerázová řetězová reakce MeSH
- teoretické modely MeSH
- viry klíšťové encefalitidy * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The tick-borne encephalitis virus (TBEV) causes a most important viral life-threatening illness transmitted by ticks. The interactions between the virus and ticks are largely unexplored, indicating a lack of experimental tools and systematic studies. One such tool is recombinant reporter TBEV, offering antibody-free visualization to facilitate studies of transmission and interactions between a tick vector and a virus. In this paper, we utilized a recently developed recombinant TBEV expressing the reporter gene mCherry to study its fitness in various tick-derived in vitro cell cultures and live unfed nymphal Ixodes ricinus ticks. The reporter virus was successfully replicated in tick cell lines and live ticks as confirmed by the plaque assay and the mCherry-specific polymerase chain reaction (PCR). Although a strong mCherry signal determined by fluorescence microscopy was detected in several tick cell lines, the fluorescence of the reporter was not observed in the live ticks, corroborated also by immunoblotting. Our data indicate that the mCherry reporter TBEV might be an excellent tool for studying TBEV-tick interactions using a tick in vitro model. However, physiological attributes of a live tick, likely contributing to the inactivity of the reporter, warrant further development of reporter-tagged viruses to study TBEV in ticks in vivo.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Faculty of Science University of South Bohemia 37005 Ceske Budejovice Czech Republic
Institute of Zoology Slovak Academy of Sciences 84506 Bratislava Slovakia
Zobrazit více v PubMed
Bogovic P. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI
Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC
Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI
Havlíková S., Ličková M., Klempa B. Non-viraemic transmission of tick-borne viruses. Acta Virol. 2013;57:123–129. doi: 10.4149/av_2013_02_123. PubMed DOI
Labuda M., Danielova V., Jones L.D., Nuttall P.A. Amplification of tick-borne encephalitis virus infection during co-feeding of ticks. Med. Vet. Entomol. 1993;7:339–342. doi: 10.1111/j.1365-2915.1993.tb00702.x. PubMed DOI
Khasnatinov M.A., Tuplin A., Gritsun D.J., Slovak M., Kazimirova M., Lickova M., Havlikova S., Klempa B., Labuda M., Gould E.A., et al. Tick-Borne encephalitis virus structural proteins are the primary viral determinants of non-viraemic transmission between ticks whereas non-structural proteins affect cytotoxicity. PLoS ONE. 2016;11:e0158105. doi: 10.1371/journal.pone.0158105. PubMed DOI PMC
Offerdahl D.K., Clancy N.G., Bloom M.E. Stability of a tick-borne flavivirus in milk. Front. Bioeng. Biotechnol. 2016;4:40. doi: 10.3389/fbioe.2016.00040. PubMed DOI PMC
Ličková M., Havlíková S.F., Sláviková M., Klempa B. Alimentary infections by tick-borne encephalitis virus. Viruses. 2021;14:56. doi: 10.3390/v14010056. PubMed DOI PMC
Aubry F., Nougairède A., de Fabritus L., Querat G., Gould E.A., de Lamballerie X. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J. Gen. Virol. 2014;95:2462–2467. doi: 10.1099/vir.0.068023-0. PubMed DOI PMC
De Fabritus L., Nougairède A., Aubry F., Gould E.A., de Lamballerie X. Utilisation of ISA reverse genetics and large-scale random codon re-encoding to produce attenuated strains of tick-borne encephalitis virus within days. PLoS ONE. 2016;11:e0159564. doi: 10.1371/journal.pone.0159564. PubMed DOI PMC
Tamura T., Igarashi M., Enkhbold B., Suzuki T., Okamatsu M., Ono C., Mori H., Izumi T., Sato A., Fauzyah Y., et al. In vivo dynamics of reporter Flaviviridae viruses. J. Virol. 2019;93:e01191-19. doi: 10.1128/JVI.01191-19. PubMed DOI PMC
Suphatrakul A., Duangchinda T., Jupatanakul N., Prasittisa K., Onnome S., Pengon J., Siridechadilok B. Multi-color fluorescent reporter dengue viruses with improved stability for analysis of a multi-virus infection. PLoS ONE. 2018;13:e0194399. doi: 10.1371/journal.pone.0194399. PubMed DOI PMC
Yun S.I., Song B.H., Woolley M.E., Frank J.C., Julander J.G., Lee Y.M. Development, characterization, and application of two reporter-expressing recombinant zika viruses. Viruses. 2020;12:572. doi: 10.3390/v12050572. PubMed DOI PMC
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F. Tick cell lines: Tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI
Salata C., Moutailler S., Attoui H., Zweygarth E., Decker L., Bell-Sakyi L. How relevant are in vitro culture models for study of tick-pathogen interactions? Pathog. Glob. Health. 2021;115:437–455. doi: 10.1080/20477724.2021.1944539. PubMed DOI PMC
Grabowski J.M., Tsetsarkin K.A., Long D., Scott D.P., Rosenke R., Schwan T.G., Mlera L., Offerdahl D.K., Pletnev A.G., Bloom E. Flavivirus infection of Ixodes scapularis (black-legged tick) ex vivo organotypic cultures and applications for disease control. mBio. 2017;8:e01255-17. doi: 10.1128/mBio.01255-17. PubMed DOI PMC
Grabowski J.M., Nilsson O.R., Fischer E.R., Long D., Offerdahl D.K., Park Y., Scott D.P., Bloom M.E. Dissecting flavivirus biology in salivary gland cultures from fed and unfed Ixodes scapularis (black-legged tick) mBio. 2019;10:e02628-18. doi: 10.1128/mBio.02628-18. PubMed DOI PMC
Kendall B.L., Grabowski J.M., Rosenke R., Pulliam M., Long D.R., Scott D.P., Offerdahl D.K., Bloom M.E. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl. Trop. Dis. 2020;14:e0008683. doi: 10.1371/journal.pntd.0008683. PubMed DOI PMC
Driouich J.S., Ali S.M., Amroun A., Aubry F., de Lamballerie X., Nougairède A. SuPReMe: A rapid reverse genetics method to generate clonal populations of recombinant RNA viruses article. Emerg. Microbes Infect. 2018;7:1–11. doi: 10.1038/s41426-018-0040-2. PubMed DOI PMC
Atieh T., el Ayoubi M.D., Aubry F., Priet S., de Lamballerie X., Nougairède A. Haiku: New paradigm for the reverse genetics of emerging RNA viruses. PLoS ONE. 2018;13:e0193069. doi: 10.1371/journal.pone.0193069. PubMed DOI PMC
Haviernik J., Eyer L., Yoshii K., Kobayashi S., Cerny J., Nougairède A., Driouich J.S., Volf J., Palus M., de Lamballerie X., et al. Development and characterization of recombinant tick-borne encephalitis virus expressing mcherry reporter protein: A New tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antivir. Res. 2021;185:104968. doi: 10.1016/j.antiviral.2020.104968. PubMed DOI
Simser J.A., Palmer A.T., Fingerle V., Wilske B., Kurtti T.J., Munderloh U.G. Rickettsia Monacensis Sp. Nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl. Environ. Microbiol. 2002;68:4559–4566. doi: 10.1128/AEM.68.9.4559-4566.2002. PubMed DOI PMC
Munderloh U.G., Liu Y., Wang M., Chen C., Kurtti T.J. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 1994;80:533. doi: 10.2307/3283188. PubMed DOI
Bell-Sakyi L., Růžek D., Gould E.A. Cell lines from the soft tick Ornithodoros moubata. Exp. Appl. Acarol. 2009;49:209–219. doi: 10.1007/s10493-009-9258-y. PubMed DOI PMC
Slovák M., Kazimírová M., Siebenstichová M., Ustaníková K., Klempa B., Gritsun T., Gould E.A., Nuttall P.A. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5:962–969. doi: 10.1016/j.ttbdis.2014.07.019. PubMed DOI
Sirmarova J., Salat J., Palus M., Hönig V., Langhansova H., Holbrook M.R., Ruzek D. Kyasanur forest disease virus infection activates human vascular endothelial cells and monocyte-derived dendritic cells. Emerg. Microbes Infect. 2018;7:1–12. doi: 10.1038/s41426-018-0177-z. PubMed DOI PMC
Ličková M., Fumačová Havlíková S., Sláviková M., Slovák M., Drexler J.F., Klempa B. Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis. 2020;11:101414. doi: 10.1016/j.ttbdis.2020.101414. PubMed DOI
Arias-Arias J.L., Mora-Rodríguez R. Human Viruses: Diseases, Treatments and Vaccines. Springer; Berlin/Heidelberg, Germany: 2021. Fluorescence imaging approaches in flavivirus research.
Rehacek J. Arthropod cell cultures in studies of tick-borne togaviruses and orbiviruses in Central Europe. In: Yunker C., editor. Arboviruses in Arthropod Cells In Vitro. Volume 1. CRC Press; Boca Raton, FL, USA: 1987.
Růžek D., Bell-Sakyi L., Kopecký J., Grubhoffer L. Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res. 2008;137:142–146. doi: 10.1016/j.virusres.2008.05.013. PubMed DOI
Belova O.A., Litov A.G., Kholodilov I.S., Kozlovskaya L.I., Bell-Sakyi L., Romanova L.I., Karganova G.G. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks Tick Borne Dis. 2017;8:895–906. doi: 10.1016/j.ttbdis.2017.07.008. PubMed DOI
Zou G., Xu H.Y., Qing M., Wang Q.Y., Shi P.Y. Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antivir. Res. 2011;91:11–19. doi: 10.1016/j.antiviral.2011.05.001. PubMed DOI
Zhang Z.R., Zhang H.Q., Li X.D., Deng C.L., Wang Z., Li J.Q., Li N., Zhang Q.Y., Zhang H.L., Zhang B., et al. Generation and characterization of japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antivir. Res. 2020;182:104884. doi: 10.1016/j.antiviral.2020.104884. PubMed DOI PMC
Costantini L.M., Baloban M., Markwardt M.L., Rizzo M., Guo F., Verkhusha V.V., Snapp E.L. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 2015;6:7670. doi: 10.1038/ncomms8670. PubMed DOI PMC
Katayama H., Yamamoto A., Mizushima N., Yoshimori T., Miyawaki A. GFP-like proteins stably accumulate in lysosomes. Cell Struct. Funct. 2008;33:1–12. doi: 10.1247/csf.07011. PubMed DOI
Bílý T., Palus M., Eyer L., Elsterová J., Vancová M., Růžek D. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci. Rep. 2015;5:10745. doi: 10.1038/srep10745. PubMed DOI PMC
Torres F.J., Parry R., Hugo L.E., Slonchak A., Newton N.D., Vet L.J., Modhiran N., Pullinger B., Wang X., Potter J., et al. Reporter flaviviruses as tools to demonstrate homologous and heterologous superinfection exclusion. Viruses. 2022;14:1501. doi: 10.3390/v14071501. PubMed DOI PMC