Fitness of mCherry Reporter Tick-Borne Encephalitis Virus in Tick Experimental Models

. 2022 Nov 29 ; 14 (12) : . [epub] 20221129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36560677

The tick-borne encephalitis virus (TBEV) causes a most important viral life-threatening illness transmitted by ticks. The interactions between the virus and ticks are largely unexplored, indicating a lack of experimental tools and systematic studies. One such tool is recombinant reporter TBEV, offering antibody-free visualization to facilitate studies of transmission and interactions between a tick vector and a virus. In this paper, we utilized a recently developed recombinant TBEV expressing the reporter gene mCherry to study its fitness in various tick-derived in vitro cell cultures and live unfed nymphal Ixodes ricinus ticks. The reporter virus was successfully replicated in tick cell lines and live ticks as confirmed by the plaque assay and the mCherry-specific polymerase chain reaction (PCR). Although a strong mCherry signal determined by fluorescence microscopy was detected in several tick cell lines, the fluorescence of the reporter was not observed in the live ticks, corroborated also by immunoblotting. Our data indicate that the mCherry reporter TBEV might be an excellent tool for studying TBEV-tick interactions using a tick in vitro model. However, physiological attributes of a live tick, likely contributing to the inactivity of the reporter, warrant further development of reporter-tagged viruses to study TBEV in ticks in vivo.

Zobrazit více v PubMed

Bogovic P. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC

Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI

Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC

Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI

Havlíková S., Ličková M., Klempa B. Non-viraemic transmission of tick-borne viruses. Acta Virol. 2013;57:123–129. doi: 10.4149/av_2013_02_123. PubMed DOI

Labuda M., Danielova V., Jones L.D., Nuttall P.A. Amplification of tick-borne encephalitis virus infection during co-feeding of ticks. Med. Vet. Entomol. 1993;7:339–342. doi: 10.1111/j.1365-2915.1993.tb00702.x. PubMed DOI

Khasnatinov M.A., Tuplin A., Gritsun D.J., Slovak M., Kazimirova M., Lickova M., Havlikova S., Klempa B., Labuda M., Gould E.A., et al. Tick-Borne encephalitis virus structural proteins are the primary viral determinants of non-viraemic transmission between ticks whereas non-structural proteins affect cytotoxicity. PLoS ONE. 2016;11:e0158105. doi: 10.1371/journal.pone.0158105. PubMed DOI PMC

Offerdahl D.K., Clancy N.G., Bloom M.E. Stability of a tick-borne flavivirus in milk. Front. Bioeng. Biotechnol. 2016;4:40. doi: 10.3389/fbioe.2016.00040. PubMed DOI PMC

Ličková M., Havlíková S.F., Sláviková M., Klempa B. Alimentary infections by tick-borne encephalitis virus. Viruses. 2021;14:56. doi: 10.3390/v14010056. PubMed DOI PMC

Aubry F., Nougairède A., de Fabritus L., Querat G., Gould E.A., de Lamballerie X. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J. Gen. Virol. 2014;95:2462–2467. doi: 10.1099/vir.0.068023-0. PubMed DOI PMC

De Fabritus L., Nougairède A., Aubry F., Gould E.A., de Lamballerie X. Utilisation of ISA reverse genetics and large-scale random codon re-encoding to produce attenuated strains of tick-borne encephalitis virus within days. PLoS ONE. 2016;11:e0159564. doi: 10.1371/journal.pone.0159564. PubMed DOI PMC

Tamura T., Igarashi M., Enkhbold B., Suzuki T., Okamatsu M., Ono C., Mori H., Izumi T., Sato A., Fauzyah Y., et al. In vivo dynamics of reporter Flaviviridae viruses. J. Virol. 2019;93:e01191-19. doi: 10.1128/JVI.01191-19. PubMed DOI PMC

Suphatrakul A., Duangchinda T., Jupatanakul N., Prasittisa K., Onnome S., Pengon J., Siridechadilok B. Multi-color fluorescent reporter dengue viruses with improved stability for analysis of a multi-virus infection. PLoS ONE. 2018;13:e0194399. doi: 10.1371/journal.pone.0194399. PubMed DOI PMC

Yun S.I., Song B.H., Woolley M.E., Frank J.C., Julander J.G., Lee Y.M. Development, characterization, and application of two reporter-expressing recombinant zika viruses. Viruses. 2020;12:572. doi: 10.3390/v12050572. PubMed DOI PMC

Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F. Tick cell lines: Tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI

Salata C., Moutailler S., Attoui H., Zweygarth E., Decker L., Bell-Sakyi L. How relevant are in vitro culture models for study of tick-pathogen interactions? Pathog. Glob. Health. 2021;115:437–455. doi: 10.1080/20477724.2021.1944539. PubMed DOI PMC

Grabowski J.M., Tsetsarkin K.A., Long D., Scott D.P., Rosenke R., Schwan T.G., Mlera L., Offerdahl D.K., Pletnev A.G., Bloom E. Flavivirus infection of Ixodes scapularis (black-legged tick) ex vivo organotypic cultures and applications for disease control. mBio. 2017;8:e01255-17. doi: 10.1128/mBio.01255-17. PubMed DOI PMC

Grabowski J.M., Nilsson O.R., Fischer E.R., Long D., Offerdahl D.K., Park Y., Scott D.P., Bloom M.E. Dissecting flavivirus biology in salivary gland cultures from fed and unfed Ixodes scapularis (black-legged tick) mBio. 2019;10:e02628-18. doi: 10.1128/mBio.02628-18. PubMed DOI PMC

Kendall B.L., Grabowski J.M., Rosenke R., Pulliam M., Long D.R., Scott D.P., Offerdahl D.K., Bloom M.E. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl. Trop. Dis. 2020;14:e0008683. doi: 10.1371/journal.pntd.0008683. PubMed DOI PMC

Driouich J.S., Ali S.M., Amroun A., Aubry F., de Lamballerie X., Nougairède A. SuPReMe: A rapid reverse genetics method to generate clonal populations of recombinant RNA viruses article. Emerg. Microbes Infect. 2018;7:1–11. doi: 10.1038/s41426-018-0040-2. PubMed DOI PMC

Atieh T., el Ayoubi M.D., Aubry F., Priet S., de Lamballerie X., Nougairède A. Haiku: New paradigm for the reverse genetics of emerging RNA viruses. PLoS ONE. 2018;13:e0193069. doi: 10.1371/journal.pone.0193069. PubMed DOI PMC

Haviernik J., Eyer L., Yoshii K., Kobayashi S., Cerny J., Nougairède A., Driouich J.S., Volf J., Palus M., de Lamballerie X., et al. Development and characterization of recombinant tick-borne encephalitis virus expressing mcherry reporter protein: A New tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antivir. Res. 2021;185:104968. doi: 10.1016/j.antiviral.2020.104968. PubMed DOI

Simser J.A., Palmer A.T., Fingerle V., Wilske B., Kurtti T.J., Munderloh U.G. Rickettsia Monacensis Sp. Nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl. Environ. Microbiol. 2002;68:4559–4566. doi: 10.1128/AEM.68.9.4559-4566.2002. PubMed DOI PMC

Munderloh U.G., Liu Y., Wang M., Chen C., Kurtti T.J. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 1994;80:533. doi: 10.2307/3283188. PubMed DOI

Bell-Sakyi L., Růžek D., Gould E.A. Cell lines from the soft tick Ornithodoros moubata. Exp. Appl. Acarol. 2009;49:209–219. doi: 10.1007/s10493-009-9258-y. PubMed DOI PMC

Slovák M., Kazimírová M., Siebenstichová M., Ustaníková K., Klempa B., Gritsun T., Gould E.A., Nuttall P.A. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5:962–969. doi: 10.1016/j.ttbdis.2014.07.019. PubMed DOI

Sirmarova J., Salat J., Palus M., Hönig V., Langhansova H., Holbrook M.R., Ruzek D. Kyasanur forest disease virus infection activates human vascular endothelial cells and monocyte-derived dendritic cells. Emerg. Microbes Infect. 2018;7:1–12. doi: 10.1038/s41426-018-0177-z. PubMed DOI PMC

Ličková M., Fumačová Havlíková S., Sláviková M., Slovák M., Drexler J.F., Klempa B. Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis. 2020;11:101414. doi: 10.1016/j.ttbdis.2020.101414. PubMed DOI

Arias-Arias J.L., Mora-Rodríguez R. Human Viruses: Diseases, Treatments and Vaccines. Springer; Berlin/Heidelberg, Germany: 2021. Fluorescence imaging approaches in flavivirus research.

Rehacek J. Arthropod cell cultures in studies of tick-borne togaviruses and orbiviruses in Central Europe. In: Yunker C., editor. Arboviruses in Arthropod Cells In Vitro. Volume 1. CRC Press; Boca Raton, FL, USA: 1987.

Růžek D., Bell-Sakyi L., Kopecký J., Grubhoffer L. Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res. 2008;137:142–146. doi: 10.1016/j.virusres.2008.05.013. PubMed DOI

Belova O.A., Litov A.G., Kholodilov I.S., Kozlovskaya L.I., Bell-Sakyi L., Romanova L.I., Karganova G.G. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks Tick Borne Dis. 2017;8:895–906. doi: 10.1016/j.ttbdis.2017.07.008. PubMed DOI

Zou G., Xu H.Y., Qing M., Wang Q.Y., Shi P.Y. Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antivir. Res. 2011;91:11–19. doi: 10.1016/j.antiviral.2011.05.001. PubMed DOI

Zhang Z.R., Zhang H.Q., Li X.D., Deng C.L., Wang Z., Li J.Q., Li N., Zhang Q.Y., Zhang H.L., Zhang B., et al. Generation and characterization of japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antivir. Res. 2020;182:104884. doi: 10.1016/j.antiviral.2020.104884. PubMed DOI PMC

Costantini L.M., Baloban M., Markwardt M.L., Rizzo M., Guo F., Verkhusha V.V., Snapp E.L. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 2015;6:7670. doi: 10.1038/ncomms8670. PubMed DOI PMC

Katayama H., Yamamoto A., Mizushima N., Yoshimori T., Miyawaki A. GFP-like proteins stably accumulate in lysosomes. Cell Struct. Funct. 2008;33:1–12. doi: 10.1247/csf.07011. PubMed DOI

Bílý T., Palus M., Eyer L., Elsterová J., Vancová M., Růžek D. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci. Rep. 2015;5:10745. doi: 10.1038/srep10745. PubMed DOI PMC

Torres F.J., Parry R., Hugo L.E., Slonchak A., Newton N.D., Vet L.J., Modhiran N., Pullinger B., Wang X., Potter J., et al. Reporter flaviviruses as tools to demonstrate homologous and heterologous superinfection exclusion. Viruses. 2022;14:1501. doi: 10.3390/v14071501. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...