An E460D Substitution in the NS5 Protein of Tick-Borne Encephalitis Virus Confers Resistance to the Inhibitor Galidesivir (BCX4430) and Also Attenuates the Virus for Mice

. 2019 Aug 15 ; 93 (16) : . [epub] 20190730

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31142664

The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of tick-borne encephalitis virus (TBEV) and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses. Here, we demonstrate that an E460D substitution in the active site of TBEV RNA-dependent RNA polymerase (RdRp) confers resistance to galidesivir in cell culture. Galidesivir-resistant TBEV exhibited no cross-resistance to structurally different antiviral nucleoside analogues, such as 7-deaza-2'-C-methyladenosine, 2'-C-methyladenosine, and 4'-azido-aracytidine. Although the E460D substitution led to only a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in vivo, with a 100% survival rate and no clinical signs observed in infected mice. Furthermore, no virus was detected in the sera, spleen, or brain of mice inoculated with the galidesivir-resistant TBEV. Our results contribute to understanding the molecular basis of galidesivir antiviral activity, flavivirus resistance to nucleoside inhibitors, and the potential contribution of viral RdRp to flavivirus neurovirulence.IMPORTANCE Tick-borne encephalitis virus (TBEV) is a pathogen that causes severe human neuroinfections in Europe and Asia and for which there is currently no specific therapy. We have previously found that galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, which is under clinical development for treatment of Ebola and yellow fever virus infections, has a strong antiviral effect against TBEV. For any antiviral drug, it is important to generate drug-resistant mutants to understand how the drug works. Here, we produced TBEV mutants resistant to galidesivir and found that the resistance is caused by a single amino acid substitution in an active site of the viral RNA-dependent RNA polymerase, an enzyme which is crucial for replication of the viral RNA genome. Although this substitution led only to a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in a mouse model. Our results contribute to understanding the molecular basis of galidesivir antiviral activity.

Zobrazit více v PubMed

Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A, Miller AD, Osolodkin DI, Överby AK, Tikunova N, Tkachev S, Zajkowska J. 2019. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 164:23–51. doi:10.1016/j.antiviral.2019.01.014. PubMed DOI

Dumpis U, Crook D, Oksi J. 1999. Tick-borne encephalitis. Clin Infect Dis 28:882–890. doi:10.1086/515195. PubMed DOI

Heinz FX, Mandl CW. 1993. The molecular-biology of tick-borne encephalitis virus. APMIS 101:735–745. doi:10.1111/j.1699-0463.1993.tb00174.x. PubMed DOI

Ruzek D, Dobler G, Mantke OD. 2010. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med Infect Dis 8:223–232. doi:10.1016/j.tmaid.2010.06.004. PubMed DOI

Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. 2018. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 26:1–28. PubMed PMC

Eyer L, Šmídková M, Nencka R, Neča J, Kastl T, Palus M, De Clercq E, Růžek D. 2016. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antiviral Res 133:119–129. doi:10.1016/j.antiviral.2016.07.018. PubMed DOI

Eyer L, Zouharová D, Širmarová J, Fojtíková M, Štefánik M, Haviernik J, Nencka R, de Clercq E, Růžek D. 2017. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Res 142:63–67. doi:10.1016/j.antiviral.2017.03.012. PubMed DOI

Eyer L, Kondo H, Zouharova D, Hirano M, Valdes JJ, Muto M, Kastl T, Kobayashi S, Haviernik J, Igarashi M, Kariwa H, Vaculovicova M, Cerny J, Kizek R, Kroger A, Lienenklaus S, Dejmek M, Nencka R, Palus M, Salat J, De Clercq E, Yoshii K, Ruzek D. 2017. Escape of tick-borne flavivirus from 2′-C-methylated nucleoside antivirals is mediated by a single conservative mutation in NS5 That has a dramatic effect on viral fitness. J Virol 91:1–20. PubMed PMC

Eyer L, Valdés JJ, Gil VA, Nencka R, Hřebabecký H, Šála M, Salát J, Černý J, Palus M, De Clercq E, Růžek D. 2015. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother 59:5483–5493. doi:10.1128/AAC.00807-15. PubMed DOI PMC

Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, Dong L, Retterer CJ, Eaton BP, Pegoraro G, Honnold S, Bantia S, Kotian P, Chen X, Taubenheim BR, Welch LS, Minning DM, Babu YS, Sheridan WP, Bavari S. 2014. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 508:402–405. doi:10.1038/nature13027. PubMed DOI PMC

De Clercq E. 2016. C-nucleosides to be revisited. J Med Chem 59:2301–2311. doi:10.1021/acs.jmedchem.5b01157. PubMed DOI

Julander JG, Siddharthan V, Evans J, Taylor R, Tolbert K, Apuli C, Stewart J, Collins P, Gebre M, Neilson S, Van Wettere A, Lee YM, Sheridan WP, Morrey JD, Babu YS. 2017. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res 137:14–22. doi:10.1016/j.antiviral.2016.11.003. PubMed DOI PMC

Julander JG, Bantia S, Taubenheim BR, Minning DM, Kotian P, Morrey JD, Smee DF, Sheridan WP, Babu YS. 2014. BCX4430, a novel nucleoside analog, effectively treats Yellow Fever in a hamster model. Antimicrob Agents Chemother 58:6607–6614. doi:10.1128/AAC.03368-14. PubMed DOI PMC

Taylor R, Kotian P, Warren T, Panchal R, Bavari S, Julander J, Dobo S, Rose A, El-Kattan Y, Taubenheim B, Babu Y, Sheridan WP. 2016. BCX4430: a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health 9:220–226. doi:10.1016/j.jiph.2016.04.002. PubMed DOI PMC

Westover JB, Mathis A, Taylor R, Wandersee L, Bailey KW, Sefing EJ, Hickerson BT, Jung KH, Sheridan WP, Gowen BB. 2018. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral Res 156:38–45. doi:10.1016/j.antiviral.2018.05.013. PubMed DOI PMC

Bagaglio S, Uberti-Foppa C, Morsica G. 2017. Resistance mechanisms in hepatitis C virus: implications for direct-acting antiviral use. Drugs 77:1043–1055. doi:10.1007/s40265-017-0753-x. PubMed DOI

Irwin KK, Renzette N, Kowalik TF, Jensen JD. 2016. Antiviral drug resistance as an adaptive process. Virus Evol 2:1–10. PubMed PMC

Poveda E, Wyles DL, Mena A, Pedreira JD, Castro-Iglesias A, Cachay E. 2014. Update on hepatitis C virus resistance to direct-acting antiviral agents. Antiviral Res 108:181–191. doi:10.1016/j.antiviral.2014.05.015. PubMed DOI

Lauring AS, Frydman J, Andino R. 2013. The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11:327–336. doi:10.1038/nrmicro3003. PubMed DOI PMC

Eyer L, Nougairède A, Uhlířová M, Driouich J-S, Zouharová D, Valdés JJ, Haviernik J, Gould EA, De Clercq E, de Lamballerie X, Ruzek D. 2019. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor galidesivir (BCX4430) and also attenuates the virus for mice. bioRxiv doi:10.1101/563544. PubMed DOI PMC

Aubry F, Nougairede A, de Fabritus L, Querat G, Gould EA, De Lamballerie X. 2014. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J Gen Virol 95:2462–2467. doi:10.1099/vir.0.068023-0. PubMed DOI PMC

Driouich J-S, Ali SM, Amroun A, Aubry F, de Lamballerie X, Nougairède A. 2018. SuPReMe: a rapid reverse genetics method to generate clonal populations of recombinant RNA viruses. Emerg Microbes Infect 7:1–11. doi:10.1038/s41426-018-0040-2. PubMed DOI PMC

Pawlotsky JM. 2011. Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. Hepatology 53:1742–1751. doi:10.1002/hep.24262. PubMed DOI

De Clercq E, Neyts J. 2009. Antiviral agents acting as DNA or RNA chain terminators. Handb Exp Pharmacol 189:53–84. doi:10.1007/978-3-540-79086-0_3. PubMed DOI

Hercik K, Brynda J, Nencka R, Boura E. 2017. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch Virol 162:2091–2096. doi:10.1007/s00705-017-3345-x. PubMed DOI

Hercik K, Kozak J, Sala M, Dejmek M, Hrebabecky H, Zbornikova E, Smola M, Ruzek D, Nencka R, Boura E. 2017. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral Res 137:131–133. doi:10.1016/j.antiviral.2016.11.020. PubMed DOI

Migliaccio G, Tomassini JE, Carroll SS, Tomei L, Altamura S, Bhat B, Bartholomew L, Bosserman MR, Ceccacci A, Colwell LF, Cortese R, De Francesco R, Eldrup AB, Getty KL, Hou XS, LaFemina RL, Ludmerer SW, MacCoss M, McMasters DR, Stahlhut MW, Olsen DB, Hazuda DJ, Flores OA. 2003. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem 278:49164–49170. doi:10.1074/jbc.M305041200. PubMed DOI

Xu HT, Hassounah SA, Colby-Germinario SP, Oliveira M, Fogarty C, Quan YD, Han YS, Golubkov O, Ibanescu I, Brenner B, Stranix BR, Wainberg MA. 2017. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. J Antimicrob Chemother 72:727–734. PubMed PMC

Flint M, McMullan LK, Dodd KA, Bird BH, Khristova ML, Nichol ST, Spiropoulou CF. 2014. Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses. Antimicrob Agents Chemother 58:3206–3216. doi:10.1128/AAC.02393-14. PubMed DOI PMC

Delang L, Yen PS, Vallet T, Vazeille M, Vignuzzi M, Failloux AB. 2018. Differential transmission of antiviral drug-resistant chikungunya viruses by Aedes mosquitoes. mSphere 3:e00230-18. PubMed PMC

Khatun A, Shabir N, Seo BJ, Kim BS, Yoon KJ, Kim WI. 2016. The attenuation phenotype of a ribavirin-resistant porcine reproductive and respiratory syndrome virus is maintained during sequential passages in pigs. J Virol 90:4454–4468. doi:10.1128/JVI.02836-15. PubMed DOI PMC

Gammon DB, Snoeck R, Fiten P, Krecmerova M, Holy A, De Clercq E, Opdenakker G, Evans DH, Andrei G. 2008. Mechanism of antiviral drug resistance of vaccinia virus: identification of residues in the viral DNA polymerase conferring differential resistance to antipoxvirus drugs. J Virol 82:12520–12534. doi:10.1128/JVI.01528-08. PubMed DOI PMC

Groarke JM, Pevear DC. 1999. Attenuated virulence of pleconaril-resistant coxsackievirus B3 variants. J Infect Dis 179:1538–1541. doi:10.1086/314758. PubMed DOI

Pospisil L, Jandasek L, Pesek J. 1954. Isolation of new strains of meningoencephalitis virus in the Brno region during the summer of 1953. Lek List 9:3–5. PubMed

Kozuch O, Mayer V. 1975. Pig kidney epithelial (Ps) cells: perfect tool for study of flaviviruses and some other arboviruses. Acta Virol 19:498. PubMed

Ruzek D, Gritsun TS, Forrester NL, Gould EA, Kopecky J, Golovchenko M, Rudenko N, Grubhoffer L. 2008. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology 374:249–255. doi:10.1016/j.virol.2008.01.010. PubMed DOI

Aubry F, Nougairede A, de Fabritus L, Piorkowski G, Gould EA, De Lamballerie X. 2015. ISA-Lation of single-stranded positive-sense RNA viruses from non-infectious clinical/animal samples. PLoS One 10:1–10. PubMed PMC

De Madrid AT, Porterfield JS. 1969. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ 40:113–121. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace