A combination of two resistance mechanisms is critical for tick-borne encephalitis virus escape from a broadly neutralizing human antibody
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
P01 AI138938
NIAID NIH HHS - United States
U01 AI151698
NIAID NIH HHS - United States
U19 AI111825
NIAID NIH HHS - United States
PubMed
37715951
PubMed Central
PMC10591882
DOI
10.1016/j.celrep.2023.113149
PII: S2211-1247(23)01161-0
Knihovny.cz E-zdroje
- Klíčová slova
- CP: Immunology, CP: Microbiology, escape mutant, monoclonal antibody, neutralization, tick-borne encephalitis, tick-borne encephalitis virus,
- MeSH
- epitopy MeSH
- klíšťová encefalitida * MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- protilátky virové MeSH
- viry klíšťové encefalitidy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- epitopy MeSH
- monoklonální protilátky MeSH
- protilátky virové MeSH
Tick-borne encephalitis virus (TBEV) is a flavivirus that causes human neuroinfections and represents a growing health problem. The human monoclonal antibody T025 targets envelope protein domain III (EDIII) of TBEV and related tick-borne flaviviruses, potently neutralizing TBEV in vitro and in preclinical models, representing a promising candidate for clinical development. We demonstrate that TBEV escape in the presence of T025 or T028 (another EDIII-targeting human monoclonal antibody) results in virus variants of reduced pathogenicity, characterized by distinct sets of amino acid changes in EDII and EDIII that are jointly needed to confer resistance. EDIII substitution K311N impairs formation of a salt bridge critical for T025-epitope interaction. EDII substitution E230K is not on the T025 epitope but likely induces quaternary rearrangements of the virus surface because of repulsion of positively charged residues on the adjacent EDI. A combination of T025 and T028 prevents virus escape and improves neutralization.
California Institute of Technology Pasadena CA USA
Institute for Research in Biomedicine Università della Svizzera Italiana Bellinzona Switzerland
Laboratory of Molecular Immunology The Rockefeller University New York NY USA
Zobrazit více v PubMed
Walsh SR, and Seaman MS (2021). Broadly Neutralizing Antibodies forHIV-1 Prevention. Front. Immunol. 12, 712122. 10.3389/fimmu.2021.712122. PubMed DOI PMC
Chavda VP, Prajapati R, Lathigara D, Nagar B, Kukadiya J, Redwan EM, Uversky VN, Kher MN, and Patel R (2022). Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin. Biol. Ther. 22, 763–780. 10.1080/14712598.2022.2078160. PubMed DOI
Dibo M, Battocchio EC, Dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MMM, Marinello P, Rocha SPD, and Faccin-Galhardi LC (2019). Antibody Therapy for the Control of Viral Diseases: An Update. Curr. Pharm. Biotechnol. 20, 1108–1121. 10.2174/1389201020666190809112704. PubMed DOI
Gupta SL, and Jaiswal RK (2022). Neutralizing antibody: a savior in theCovid-19 disease. Mol. Biol. Rep. 49, 2465–2474. 10.1007/s11033-021-07020-6. PubMed DOI PMC
Caskey M, Klein F, and Nussenzweig MC (2019). Broadly neutralizinganti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 25, 547–553. 10.1038/s41591-019-0412-8. PubMed DOI PMC
Zerbini FM, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Dempsey DM, Dutilh BE, García ML, Hendrickson RC, et al. (2023). Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023). Arch. Virol. 168, 175. 10.1007/s00705-023-05797-4. PubMed DOI PMC
Grabowski JM, and Hill CA (2017). A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era. Front. Cell. Infect. Microbiol. 7, 519. 10.3389/fcimb.2017.00519. PubMed DOI PMC
Gould EA, and Solomon T (2008). Pathogenic flaviviruses. Lancet 371, 500–509. 10.1016/s0140-6736(08)60238-x. PubMed DOI
Gritsun TS, Nuttall PA, and Gould EA (2003). Tick-borne flaviviruses. Adv. Virus Res. 61, 317–371. 10.1016/s0065-3527(03)61008-0. PubMed DOI
Chiffi G, Grandgirard D, Leib SL, Chrdle A, and Růžek D (2023). Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev. Med. Virol.e2470 10.1002/rmv.2470. PubMed DOI
Yoshii K (2019). Epidemiology and pathological mechanisms of tick-borne encephalitis. J. Vet. Med. Sci. 81, 343–347. 10.1292/jvms.18-0373. PubMed DOI PMC
Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A, et al. (2019). Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 164, 23–51. 10.1016/j.antiviral.2019.01.014. PubMed DOI
Yoshii K, Song JY, Park SB, Yang J, and Schmitt HJ (2017). Tick-borne encephalitis in Japan, Republic of Korea and China. Emerg. Microbes Infect. 6, e82. 10.1038/emi.2017.69. PubMed DOI PMC
Mansbridge CT, Osborne J, Holding M, Dryden M, Aram M, Brown K, and Sutton J (2022). Autochthonous tick-borne encephalitis in the United Kingdom: A second probable human case and local eco-epidemiological findings. Ticks Tick. Borne. Dis. 13, 101853. 10.1016/j.ttbdis.2021.101853. PubMed DOI
Fares W, Dachraoui K, Cherni S, Barhoumi W, Slimane TB, Younsi H, and Zhioua E (2021). Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick. Borne. Dis. 12, 101606. 10.1016/j.ttbdis.2020.101606. PubMed DOI
Chaudhuri A, and Růžek D (2013). First documented case of imported tick-borne encephalitis in Australia. Intern. Med. J. 43, 93–96. 10.1111/imj.12017. PubMed DOI
Artsob H, and Spence L (1991). Imported arbovirus infections in Canada1974-89. Can. J. Infect Dis. 2, 95–100. 10.1155/1991/678906. PubMed DOI PMC
Centers for Disease Control and Prevention CDC (2010). Tick-borne encephalitis among U.S. travelers to Europe and Asia - 2000–2009. MMWR Morb. Mortal. Wkly. Rep. 59, 335–338. PubMed
Bogovic P, Lotric-Furlan S, and Strle F (2010). What tick-borne encephalitis may look like: clinical signs and symptoms. Travel Med. Infect. Dis. 8, 246–250. 10.1016/j.tmaid.2010.05.011. PubMed DOI
Eyer L, Seley-Radtke K, and Ruzek D (2023). New directions in the experimental therapy of tick-borne encephalitis. Antiviral Res. 210, 105504. 10.1016/j.antiviral.2022.105504. PubMed DOI
Rey FA, Heinz FX, Mandl C, Kunz C, and Harrison SC (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–298. 10.1038/375291a0. PubMed DOI
Füzik T, Formanová P, Růžek D, Yoshii K, Niedrig M, and Plevka P (2018). Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 9, 436. 10.1038/s41467-018-02882-0. PubMed DOI PMC
Agudelo M, Palus M, Keeffe JR, Bianchini F, Svoboda P, Salát J, Peace A, Gazumyan A, Cipolla M, Kapoor T, et al. (2021). Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J. Exp. Med. 218, e20210236. 10.1084/jem.20210236. PubMed DOI PMC
Lauring AS, Frydman J, and Andino R (2013). The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336. 10.1038/nrmicro3003. PubMed DOI PMC
Dolan PT, Whitfield ZJ, and Andino R (2018). Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annu. Rev. Virol. 5, 69–92. 10.1146/annurev-virology-101416-041718. PubMed DOI
Holzmann H, Mandl CW, Guirakhoo F, Heinz FX, and Kunz C (1989). Characterization of antigenic variants of tick-borne encephalitis virus selected with neutralizing monoclonal antibodies. J. Gen. Virol. 70, 219–222. 10.1099/0022-1317-70-1-219. PubMed DOI
Lin B, Parrish CR, Murray JM, and Wright PJ (1994). Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202, 885–890. 10.1006/viro.1994.1410. PubMed DOI
Lok SM, Ng ML, and Aaskov J (2001). Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody. J. Med. Virol. 65, 315–323. 10.1002/jmv.2036. PubMed DOI
Zou G, Kukkaro P, Lok SM, Ng JKW, Tan GK, Hanson BJ, Alonso S, MacAry PA, and Shi PY (2012). Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Res. 95, 216–223. 10.1016/j.antiviral.2012.06.010. PubMed DOI
Beasley DWC, and Barrett ADT (2002). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol. 76, 13097–13100. 10.1128/jvi.76.24.13097-13100.2002. PubMed DOI PMC
Chambers TJ, Halevy M, Nestorowicz A, Rice CM, and Lustig S (1998). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J. Gen. Virol. 79, 2375–2380. 10.1099/0022-1317-79-10-2375. PubMed DOI
Daffis S, Kontermann RE, Korimbocus J, Zeller H, Klenk HD, and Ter Meulen J (2005). Antibody responses against wild-type yellow fever virus and the 17D vaccine strain: characterization with human monoclonal antibody fragments and neutralization escape variants. Virology 337, 262–272. 10.1016/j.virol.2005.04.031. PubMed DOI
Shimoda H, Mahmoud HYAH, Noguchi K, Terada Y, Takasaki T, Shimojima M, and Maeda K (2013). Production and characterization of monoclonal antibodies to Japanese encephalitis virus. J. Vet. Med. Sci. 75, 1077–1080. 10.1292/jvms.12-0558. PubMed DOI
Keeffe JR, Van Rompay KKA, Olsen PC, Wang Q, Gazumyan A, Azzopardi SA, Schaefer-Babajew D, Lee YE, Stuart JB, Singapuri A, et al. (2018). A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Rep. 25, 1385–1394.e7. 10.1016/j.celrep.2018.10.031. PubMed DOI PMC
McMinn PC (1997). The molecular basis of virulence of the encephalitogenic flaviviruses. J. Gen. Virol. 78, 2711–2722. 10.1099/0022-1317-78-11-2711. PubMed DOI
Holzmann H, Heinz FX, Mandl CW, Guirakhoo F, and Kunz C(1990). A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virol. 64, 5156–5159. 10.1128/jvi.64.10.5156-5159.1990. PubMed DOI PMC
Holzmann H, Stiasny K, Ecker M, Kunz C, and Heinz FX (1997). Characterization of monoclonal antibody-escape mutants of tick-borne encephalitis virus with reduced neuroinvasiveness in mice. J. Gen. Virol. 78, 31–37. 10.1099/0022-1317-78-1-31. PubMed DOI
Gao GF, Hussain MH, Reid HW, and Gould EA (1994). Identification of naturally occurring monoclonal antibody escape variants of louping ill virus. J. Gen. Virol. 75, 609–614. 10.1099/0022-1317-75-3-609. PubMed DOI
Kale SR, Shah PS, and Gadkari DA (1991). Characterization of temperature sensitive mutants of Japanese encephalitis virus isolated from persistently infected mammalian cells. Indian J. Med. Res. 93, 121–130. PubMed
Sultana H, Foellmer HG, Neelakanta G, Oliphant T, Engle M, Ledizet M, Krishnan MN, Bonafé N, Anthony KG, Marasco WA, et al. (2009). Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody. J. Immunol. 183, 650–660. 10.4049/jimmunol.0900093. PubMed DOI PMC
Hiramatsu K, Tadano M, Men R, and Lai CJ (1996). Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. Virology 224, 437–445. 10.1006/viro.1996.0550. PubMed DOI
Jiang WR, Lowe A, Higgs S, Reid H, and Gould EA (1993). Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol. 74, 931–935. 10.1099/0022-1317-74-5-931. PubMed DOI
Cecilia D, and Gould EA (1991). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70–77. 10.1016/0042-6822(91)90471-m. PubMed DOI
Muto M, Bazartseren B, Tsevel B, Dashzevge E, Yoshii K, and Kariwa H (2015). Isolation and characterization of tick-borne encephalitis virus from Ixodes persulcatus in Mongolia in 2012. Ticks Tick. Borne. Dis. 6, 623–629. 10.1016/j.ttbdis.2015.05.006. PubMed DOI
Niedrig M, Klockmann U, Lang W, Roeder J, Burk S, Modrow S, and Pauli G (1994). Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol. 38, 141–149. PubMed
Goo L, Debbink K, Kose N, Sapparapu G, Doyle MP, Wessel AW, Richner JM, Burgomaster KE, Larman BC, Dowd KA, et al. (2019). A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat. Microbiol. 4, 71–77. 10.1038/s41564-018-0283-7. PubMed DOI PMC
Kiermayr S, Stiasny K, and Heinz FX (2009). Impact of quaternary organization on the antigenic structure of the tick-borne encephalitis virus envelope glycoprotein. J. Virol. 83, 8482–8491. 10.1128/jvi.00660-09. PubMed DOI PMC
Sharma A, Zhang X, Dejnirattisai W, Dai X, Gong D, Wong wiwat W, Duquerroy S, Rouvinski A, Vaney MC, Guardado-Calvo P, et al. (2021). The epitope arrangement on flavivirus particles contributes to Mab C10’s extraordinary neutralization breadth across Zika and dengue viruses. Cell 184, 6052–6066.e18. 10.1016/j.cell.2021.11.010. PubMed DOI PMC
Medits I, Vaney MC, Rouvinski A, Rey M, Chamot-Rooke J, Rey FA, Heinz FX, and Stiasny K (2020). Extensive flavivirus E trimer breathing accompanies stem zippering of the post-fusion hairpin. EMBO Rep. 21, e50069. 10.15252/embr.202050069. PubMed DOI PMC
Eyer L, Nougairède A, Uhlířová M, Driouich JS, Zouharová D, Valdés JJ, Haviernik J, Gould EA, De Clercq E, de Lamballerie X, and Ruzek D (2019). An E460D Substitution in the NS5 Protein of Tick-Borne Encephalitis Virus Confers Resistance to the Inhibitor Galidesivir (BCX4430) and Also Attenuates the Virus for Mice. J. Virol. 93, e00367–19. 10.1128/jvi.00367-19. PubMed DOI PMC
Hall T A (1999). BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Salát J, Formanova P, Huňady M, Eyer L, Palus M, and Ruzek D (2018). Development and testing of a new tick-borne encephalitis virus vaccine candidate for veterinary use. Vaccine 36, 7257–7261. 10.1016/j.vaccine.2018.10.034. PubMed DOI
De Madrid AT, and Porterfield JS (1969). A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 40, 113–121. PubMed PMC
Růzek D, Gritsun TS, Forrester NL, Gould EA, Kopecký J, Golovchenko M, Rudenko N, and Grubhoffer L (2008). Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology 374, 249–255. 10.1016/j.virol.2008.01.010. PubMed DOI
Eyer L, Kondo H, Zouharova D, Hirano M, Valdés JJ, Muto M, Kastl T, Kobayashi S, Haviernik J, Igarashi M, et al. (2017). Escape of Tick-Borne Flavivirus from 2’-C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J. Virol. 91, e01028–17. 10.1128/jvi.01028-17. PubMed DOI PMC
Aubry F, Nougairède A, de Fabritus L, Querat G, Gould EA, and de Lamballerie X (2014). Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J. Gen. Virol. 95, 2462–2467. 10.1099/vir.0.068023-0. PubMed DOI PMC
Driouich JS, Ali SM, Amroun A, Aubry F, de Lamballerie X, and Nougairède A (2018). SuPReMe: a rapid reverse genetics method to generate clonal populations of recombinant RNA viruses. Emerg. Microbes Infect. 7, 40. 10.1038/s41426-018-0040-2. PubMed DOI PMC
Pulkkinen LIA, Barrass SV, Domanska A, Överby AK, Anastasina M, and Butcher SJ (2022). Molecular Organisation of Tick-Borne Encephalitis Virus. Viruses 14. 10.3390/v14040792. PubMed DOI PMC