Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 AI037526
NIAID NIH HHS - United States
P01 AI138938
NIAID NIH HHS - United States
U19 AI111825
NIAID NIH HHS - United States
UM1 AI100663
NIAID NIH HHS - United States
T32 AI070084
NIAID NIH HHS - United States
Howard Hughes Medical Institute - United States
U19 AI057229
NIAID NIH HHS - United States
UL1 TR001866
NCATS NIH HHS - United States
R01 AI124690
NIAID NIH HHS - United States
PubMed
33831141
PubMed Central
PMC8040517
DOI
10.1084/jem.20210236
PII: 211958
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- epitopy imunologie MeSH
- imunoglobulin G aplikace a dávkování imunologie MeSH
- klíšťová encefalitida imunologie prevence a kontrola virologie MeSH
- kohortové studie MeSH
- kultivované buňky MeSH
- lidé MeSH
- monoklonální protilátky aplikace a dávkování genetika imunologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- neutralizující protilátky aplikace a dávkování genetika imunologie MeSH
- proteiny virového obalu genetika imunologie MeSH
- protilátky virové aplikace a dávkování genetika imunologie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- viry klíšťové encefalitidy účinky léků imunologie fyziologie MeSH
- zkřížené reakce imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- epitopy MeSH
- imunoglobulin G MeSH
- monoklonální protilátky MeSH
- neutralizující protilátky MeSH
- proteiny virového obalu MeSH
- protilátky virové MeSH
Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.
Division of Biology and Biological Engineering California Institute of Technology Pasadena CA
Faculty of Social and Health Sciences University of South Bohemia České Budějovice Czech Republic
Hospital České Budějovice České Budějovice Czech Republic
Howard Hughes Medical Institute The Rockefeller University New York NY
Institute for Research in Biomedicine Università della Svizzera italiana Bellinzona Switzerland
Laboratory of Molecular Immunology The Rockefeller University New York NY
Laboratory of Virology and Infectious Disease The Rockefeller University New York NY
Zobrazit více v PubMed
Adams, P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., et al. . 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66:213–221. 10.1107/S0907444909052925 PubMed DOI PMC
Albinsson, B., Vene S., Rombo L., Blomberg J., Lundkvist Å., and Rönnberg B.. 2018. Distinction between serological responses following tick-borne encephalitis virus (TBEV) infection vs vaccination, Sweden 2017. Euro Surveill. 23:17–00838. 10.2807/1560-7917.ES.2018.23.3.17-00838 PubMed DOI PMC
Arras, C., Fescharek R., and Gregersen J.P.. 1996. Do specific hyperimmunoglobulins aggravate clinical course of tick-borne encephalitis? Lancet. 347:1331. 10.1016/S0140-6736(96)90977-0 PubMed DOI
Battye, T.G., Kontogiannis L., Johnson O., Powell H.R., and Leslie A.G.. 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67:271–281. 10.1107/S0907444910048675 PubMed DOI PMC
Baykov, I.K., Matveev A.L., Stronin O.V., Ryzhikov A.B., Matveev L.E., Kasakin M.F., Richter V.A., and Tikunova N.V.. 2014. A protective chimeric antibody to tick-borne encephalitis virus. Vaccine. 32:3589–3594. 10.1016/j.vaccine.2014.05.012 PubMed DOI
Beasley, D.W., and Barrett A.D.. 2002. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol. 76:13097–13100. 10.1128/JVI.76.24.13097-13100.2002 PubMed DOI PMC
Beauté, J., Spiteri G., Warns-Petit E., and Zeller H.. 2018. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 23:1800201. 10.2807/1560-7917.ES.2018.23.45.1800201 PubMed DOI PMC
Beltramello, M., Williams K.L., Simmons C.P., Macagno A., Simonelli L., Quyen N.T., Sukupolvi-Petty S., Navarro-Sanchez E., Young P.R., de Silva A.M., et al. . 2010. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 8:271–283. 10.1016/j.chom.2010.08.007 PubMed DOI PMC
Bogovic, P., and Strle F.. 2015. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 3:430–441. 10.12998/wjcc.v3.i5.430 PubMed DOI PMC
Bogovič, P., Lotrič-Furlan S., Avšič-Županc T., Lusa L., and Strle F.. 2018a. Factors associated with severity of tick-borne encephalitis: A prospective observational study. Travel Med. Infect. Dis. 26:25–31. 10.1016/j.tmaid.2018.10.003 PubMed DOI
Bogovič, P., Stupica D., Rojko T., Lotrič-Furlan S., Avšič-Županc T., Kastrin A., Lusa L., and Strle F.. 2018b. The long-term outcome of tick-borne encephalitis in Central Europe. Ticks Tick Borne Dis. 9:369–378. 10.1016/j.ttbdis.2017.12.001 PubMed DOI
Briney, B., Inderbitzin A., Joyce C., and Burton D.R.. 2019. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature. 566:393–397. 10.1038/s41586-019-0879-y PubMed DOI PMC
Caini, S., Szomor K., Ferenczi E., Szekelyne Gaspar A., Csohan A., Krisztalovics K., Molnar Z., and Horvath J.. 2012. Tick-borne encephalitis transmitted by unpasteurised cow milk in western Hungary, September to October 2011. Euro Surveill. 17:17. PubMed
Calisher, C.H., Karabatsos N., Dalrymple J.M., Shope R.E., Porterfield J.S., Westaway E.G., and Brandt W.E.. 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 70:37–43. 10.1099/0022-1317-70-1-37 PubMed DOI
Chen, F., Tzarum N., Wilson I.A., and Law M.. 2019. VH1-69 antiviral broadly neutralizing antibodies: genetics, structures, and relevance to rational vaccine design. Curr. Opin. Virol. 34:149–159. 10.1016/j.coviro.2019.02.004 PubMed DOI PMC
Cisak, E., Wójcik-Fatla A., Zając V., Sroka J., Buczek A., and Dutkiewicz J.. 2010. Prevalence of tick-borne encephalitis virus (TBEV) in samples of raw milk taken randomly from cows, goats and sheep in eastern Poland. Ann. Agric. Environ. Med. 17:283–286. PubMed
Crill, W.D., and Roehrig J.T.. 2001. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75:7769–7773. 10.1128/JVI.75.16.7769-7773.2001 PubMed DOI PMC
Crooks, G.E., Hon G., Chandonia J.M., and Brenner S.E.. 2004. WebLogo: a sequence logo generator. Genome Res. 14:1188–1190. 10.1101/gr.849004 PubMed DOI PMC
De Madrid, A.T., and Porterfield J.S.. 1969. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 40:113–121. PubMed PMC
DeWitt, W.S., Lindau P., Snyder T.M., Sherwood A.M., Vignali M., Carlson C.S., Greenberg P.D., Duerkopp N., Emerson R.O., and Robins H.S.. 2016. A Public Database of Memory and Naive B-Cell Receptor Sequences. PLoS One. 11:e0160853. 10.1371/journal.pone.0160853 PubMed DOI PMC
Dobler, G., Kaier K., Hehn P., Böhmer M.M., Kreusch T.M., and Borde J.P.. 2020. Tick-borne encephalitis virus vaccination breakthrough infections in Germany: a retrospective analysis from 2001 to 2018. Clin. Microbiol. Infect. 26:1090.e7–1090.e13. 10.1016/j.cmi.2019.12.001 PubMed DOI
Donoso-Mantke, O., Karan L.S., and Růžek D.. 2011. Tick-Borne Encephalitis Virus: A General Overview. In Flavivirus Encephalitis. Růžek D., editor. InTech, Rijeka, Croatia. pp. 133–156. 10.5772/21912 DOI
Edeling, M.A., Austin S.K., Shrestha B., Dowd K.A., Mukherjee S., Nelson C.A., Johnson S., Mabila M.N., Christian E.A., Rucker J., et al. . 2014. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement. PLoS Pathog. 10:e1004072. 10.1371/journal.ppat.1004072 PubMed DOI PMC
Emsley, P., and Cowtan K.. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126–2132. 10.1107/S0907444904019158 PubMed DOI
Füzik, T., Formanová P., Růžek D., Yoshii K., Niedrig M., and Plevka P.. 2018. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 9:436. 10.1038/s41467-018-02882-0 PubMed DOI PMC
Girl, P., Bestehorn-Willmann M., Zange S., Borde J.P., Dobler G., and von Buttlar H.. 2020. Tick-Borne Encephalitis Virus Nonstructural Protein 1 IgG Enzyme-Linked Immunosorbent Assay for Differentiating Infection versus Vaccination Antibody Responses. J. Clin. Microbiol. 58:e01783-19. 10.1128/JCM.01783-19 PubMed DOI PMC
Gould, E.A., and Solomon T.. 2008. Pathogenic flaviviruses. Lancet. 371:500–509. 10.1016/S0140-6736(08)60238-X PubMed DOI
Gupta, N.T., Vander Heiden J.A., Uduman M., Gadala-Maria D., Yaari G., and Kleinstein S.H.. 2015. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics. 31:3356–3358. 10.1093/bioinformatics/btv359 PubMed DOI PMC
Guy, H.R. 1985. Amino acid side-chain partition energies and distribution of residues in soluble proteins. Biophys. J. 47:61–70. 10.1016/S0006-3495(85)83877-7 PubMed DOI PMC
Halstead, S.B. 2014. Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. Microbiol. Spectr. 2:2. PubMed
Holzmann, H. 2003. Diagnosis of tick-borne encephalitis. Vaccine. 21(Suppl 1):S36–S40. 10.1016/S0264-410X(02)00819-8 PubMed DOI
Holzmann, H., Aberle S.W., Stiasny K., Werner P., Mischak A., Zainer B., Netzer M., Koppi S., Bechter E., and Heinz F.X.. 2009. Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerg. Infect. Dis. 15:1671–1673. 10.3201/eid1510.090743 PubMed DOI PMC
Kaiser, R. 2008. Tick-borne encephalitis. Infect. Dis. Clin. North Am. 22:561–575: x. 10.1016/j.idc.2008.03.013 PubMed DOI
Keeffe, J.R., Van Rompay K.K.A., Olsen P.C., Wang Q., Gazumyan A., Azzopardi S.A., Schaefer-Babajew D., Lee Y.E., Stuart J.B., Singapuri A., et al. . 2018. A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Rep. 25:1385–1394.e7. 10.1016/j.celrep.2018.10.031 PubMed DOI PMC
Kenney, J.L., Anishchenko M., Hermance M., Romo H., Chen C.I., Thangamani S., and Brault A.C.. 2018. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence. Vector Borne Zoonotic Dis. 18:371–381. 10.1089/vbz.2017.2224 PubMed DOI PMC
Klein, F., Nogueira L., Nishimura Y., Phad G., West A.P. Jr., Halper-Stromberg A., Horwitz J.A., Gazumyan A., Liu C., Eisenreich T.R., et al. . 2014. Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. J. Exp. Med. 211:2361–2372. 10.1084/jem.20141050 PubMed DOI PMC
Kluger, G., Schöttler A., Waldvogel K., Nadal D., Hinrichs W., Wündisch G.F., and Laub M.C.. 1995. Tickborne encephalitis despite specific immunoglobulin prophylaxis. Lancet. 346:1502. 10.1016/S0140-6736(95)92527-9 PubMed DOI
Kollaritsch, H., Chmelík V., Dontsenko I., Grzeszczuk A., Kondrusik M., Usonis V., and Lakos A.. 2011. The current perspective on tick-borne encephalitis awareness and prevention in six Central and Eastern European countries: report from a meeting of experts convened to discuss TBE in their region. Vaccine. 29:4556–4564. 10.1016/j.vaccine.2011.04.061 PubMed DOI
Kozuch, O., and Mayer V.. 1975. Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 19:498. PubMed
Kreil, T.R., Maier E., Fraiss S., and Eibl M.M.. 1998. Neutralizing antibodies protect against lethal flavivirus challenge but allow for the development of active humoral immunity to a nonstructural virus protein. J. Virol. 72:3076–3081. 10.1128/JVI.72.4.3076-3081.1998 PubMed DOI PMC
Krissinel, E., and Henrick K.. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774–797. 10.1016/j.jmb.2007.05.022 PubMed DOI
Kuno, G., Chang G.-J.J., Tsuchiya K.R., Karabatsos N., and Cropp C.B.. 1998. Phylogeny of the genus Flavivirus. J. Virol. 72:73–83. 10.1128/JVI.72.1.73-83.1998 PubMed DOI PMC
Kyte, J., and Doolittle R.F.. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132. 10.1016/0022-2836(82)90515-0 PubMed DOI
Lai, C.Y., Tsai W.Y., Lin S.R., Kao C.L., Hu H.P., King C.C., Wu H.C., Chang G.J., and Wang W.K.. 2008. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J. Virol. 82:6631–6643. 10.1128/JVI.00316-08 PubMed DOI PMC
LaSala, P.R., and Holbrook M.. 2010. Tick-borne flaviviruses. Clin. Lab. Med. 30:221–235. 10.1016/j.cll.2010.01.002 PubMed DOI
Levanov, L.N., Matveev L.E., Goncharova E.P., Lebedev L.R., Ryzhikov A.B., Yun T.E., Batanova T.A., Shvalov A.N., Baykov I.K., Shingarova L.N., et al. . 2010. Chimeric antibodies against tick-borne encephalitis virus. Vaccine. 28:5265–5271. 10.1016/j.vaccine.2010.05.060 PubMed DOI
Loew-Baselli, A., Poellabauer E.-M., Pavlova B.G., Fritsch S., Koska M., Bobrovsky R., Konior R., and Ehrlich H.J.. 2009. Seropersistence of tick-borne encephalitis antibodies, safety and booster response to FSME-IMMUN 0.5 ml in adults aged 18-67 years. Hum. Vaccin. 5:551–556. 10.4161/hv.5.8.8571 PubMed DOI
Lotrič-Furlan, S., Bogovič P., Avšič-Županc T., Jelovšek M., Lusa L., and Strle F.. 2017. Tick-borne encephalitis in patients vaccinated against this disease. J. Intern. Med. 282:142–155. 10.1111/joim.12625 PubMed DOI
Maikova, G.B., Chernokhaeva L.L., Rogova Y.V., Kozlovskaya L.I., Kholodilov I.S., Romanenko V.V., Esyunina M.S., Ankudinova A.A., Kilyachina A.S., Vorovitch M.F., and Karganova G.G.. 2019. Ability of inactivated vaccines based on far-eastern tick-borne encephalitis virus strains to induce humoral immune response in originally seropositive and seronegative recipients. J. Med. Virol. 91:190–200. 10.1002/jmv.25316 PubMed DOI
Mansfield, K.L., Horton D.L., Johnson N., Li L., Barrett A.D.T., Smith D.J., Galbraith S.E., Solomon T., and Fooks A.R.. 2011. Flavivirus-induced antibody cross-reactivity. J. Gen. Virol. 92:2821–2829. 10.1099/vir.0.031641-0 PubMed DOI PMC
Matveev, A., Matveev L., Stronin O., Baykov I., Emeljanova L., Khlusevich Y., and Tikunova N.. 2020. Characterization of neutralizing monoclonal antibody against tick-borne encephalitis virus in vivo. Vaccine. 38:4309–4315. 10.1016/j.vaccine.2020.04.051 PubMed DOI
Matveeva, V.A., Popova R.V., Kvetkova E.A., Chernicina L.O., Zlobin V.I., Puchovskaya N.M., and Morozova O.V.. 1995. Antibodies against tick-borne encephalitis virus (TBEV) non-structural and structural proteins in human sera and spinal fluid. Immunol. Lett. 46:1–4. 10.1016/0165-2478(95)00021-V PubMed DOI
McAuley, A.J., Sawatsky B., Ksiazek T., Torres M., Korva M., Lotrič-Furlan S., Avšič-Županc T., von Messling V., Holbrook M.R., Freiberg A.N., et al. . 2017. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection. NPJ Vaccines. 2:5. 10.1038/s41541-017-0009-5 PubMed DOI PMC
McCoy, A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., and Read R.J.. 2007. Phaser crystallographic software. J. Appl. Cryst. 40:658–674. 10.1107/S0021889807021206 PubMed DOI PMC
Morens, D.M., and Fauci A.S.. 2020. Emerging Pandemic Diseases: How We Got to COVID-19. Cell. 182:1077–1092. 10.1016/j.cell.2020.08.021 PubMed DOI PMC
Mouquet, H., Scharf L., Euler Z., Liu Y., Eden C., Scheid J.F., Halper-Stromberg A., Gnanapragasam P.N., Spencer D.I., Seaman M.S., et al. . 2012. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA. 109:E3268–E3277. 10.1073/pnas.1217207109 PubMed DOI PMC
Nybakken, G.E., Oliphant T., Johnson S., Burke S., Diamond M.S., and Fremont D.H.. 2005. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature. 437:764–769. 10.1038/nature03956 PubMed DOI PMC
Pen’evskaia, N.A., and Rudakov N.V.. 2010. [Efficiency of use of immunoglobulin preparations for the postexposure prevention of tick-borne encephalitis in Russia (a review of semi-centennial experience)]. Med. Parazitol. (Mosk.). 1:53–59. PubMed
Phillpotts, R.J., Stephenson J.R., and Porterfield J.S.. 1985. Antibody-dependent enhancement of tick-borne encephalitis virus infectivity. J. Gen. Virol. 66:1831–1837. 10.1099/0022-1317-66-8-1831 PubMed DOI
Pierson, T.C., Sánchez M.D., Puffer B.A., Ahmed A.A., Geiss B.J., Valentine L.E., Altamura L.A., Diamond M.S., and Doms R.W.. 2006. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology. 346:53–65. 10.1016/j.virol.2005.10.030 PubMed DOI
Pierson, T.C., Fremont D.H., Kuhn R.J., and Diamond M.S.. 2008. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe. 4:229–238. 10.1016/j.chom.2008.08.004 PubMed DOI PMC
Pokorna Formanova, P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., and Ruzek D.. 2019. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflammation. 16:205. 10.1186/s12974-019-1596-z PubMed DOI PMC
Pulkkinen, L.I.A., Butcher S.J., and Anastasina M.. 2018. Tick-Borne Encephalitis Virus: A Structural View. Viruses. 10:350. 10.3390/v10070350 PubMed DOI PMC
Rabel, P.O., Planitzer C.B., Farcet M.R., and Kreil T.R.. 2012. Tick-borne encephalitis virus-neutralizing antibodies in different immunoglobulin preparations. Clin. Vaccine Immunol. 19:623–625. 10.1128/CVI.05705-11 PubMed DOI PMC
Ramaraj, T., Angel T., Dratz E.A., Jesaitis A.J., and Mumey B.. 2012. Antigen-antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. Biochim. Biophys. Acta. 1824:520–532. 10.1016/j.bbapap.2011.12.007 PubMed DOI PMC
Remoli, M.E., Marchi A., Fortuna C., Benedetti E., Minelli G., Fiorentini C., Mel R., Venturi G., and Ciufolini M.G.. 2015. Anti-tick-borne encephalitis (TBE) virus neutralizing antibodies dynamics in natural infections versus vaccination. Pathog. Dis. 73:1–3. 10.1093/femspd/ftu002 PubMed DOI
Renner, M., Flanagan A., Dejnirattisai W., Puttikhunt C., Kasinrerk W., Supasa P., Wongwiwat W., Chawansuntati K., Duangchinda T., Cowper A., et al. . 2018. Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. Nat. Immunol. 19:1248–1256. 10.1038/s41590-018-0227-7 PubMed DOI PMC
Rey, F.A., Heinz F.X., Mandl C., Kunz C., and Harrison S.C.. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 375:291–298. 10.1038/375291a0 PubMed DOI
Robbiani, D.F., Bozzacco L., Keeffe J.R., Khouri R., Olsen P.C., Gazumyan A., Schaefer-Babajew D., Avila-Rios S., Nogueira L., Patel R., et al. . 2017. Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell. 169:597–609.e11. 10.1016/j.cell.2017.04.024 PubMed DOI PMC
Robbiani, D.F., Gaebler C., Muecksch F., Lorenzi J.C.C., Wang Z., Cho A., Agudelo M., Barnes C.O., Gazumyan A., Finkin S., et al. . 2020. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 584:437–442. 10.1038/s41586-020-2456-9 PubMed DOI PMC
Rock, E.P., Sibbald P.R., Davis M.M., and Chien Y.H.. 1994. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179:323–328. 10.1084/jem.179.1.323 PubMed DOI PMC
Roehrig, J.T. 2003. Antigenic structure of flavivirus proteins. Adv. Virus Res. 59:141–175. 10.1016/S0065-3527(03)59005-4 PubMed DOI
Rubelt, F., Sievert V., Knaust F., Diener C., Lim T.S., Skriner K., Klipp E., Reinhardt R., Lehrach H., and Konthur Z.. 2012. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. PLoS One. 7:e49774. 10.1371/journal.pone.0049774 PubMed DOI PMC
Russian Ministry of Health . 2008. Sanitary and Epidemiological Rules SP 3.1.3.2352-08. Russian Ministry of Health, Moscow.
Ruzek, D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. . 2019. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 164:23–51. 10.1016/j.antiviral.2019.01.014 PubMed DOI
Sapparapu, G., Fernandez E., Kose N., Bin Cao J.M., Fox J.M., Bombardi R.G., Zhao H., Nelson C.A., Bryan A.L., Barnes T., et al. . 2016. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. 540:443–447. 10.1038/nature20564 PubMed DOI PMC
Scheid, J.F., Mouquet H., Ueberheide B., Diskin R., Klein F., Oliveira T.Y., Pietzsch J., Fenyo D., Abadir A., Velinzon K., et al. . 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 333:1633–1637. 10.1126/science.1207227 PubMed DOI PMC
Screaton, G., Mongkolsapaya J., Yacoub S., and Roberts C.. 2015. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15:745–759. 10.1038/nri3916 PubMed DOI
Širmarová, J., Tichá L., Golovchenko M., Salát J., Grubhoffer L., Rudenko N., Nowotny N., and Růžek D.. 2014. Seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus in zoo animal species in the Czech Republic. Ticks Tick Borne Dis. 5:523–527. 10.1016/j.ttbdis.2014.03.008 PubMed DOI
Smura, T., Tonteri E., Jääskeläinen A., von Troil G., Kuivanen S., Huitu O., Kareinen L., Uusitalo J., Uusitalo R., Hannila-Handelberg T., et al. . 2019. Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerg. Microbes Infect. 8:675–683. 10.1080/22221751.2019.1612279 PubMed DOI PMC
Stettler, K., Beltramello M., Espinosa D.A., Graham V., Cassotta A., Bianchi S., Vanzetta F., Minola A., Jaconi S., Mele F., et al. . 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science. 353:823–826. 10.1126/science.aaf8505 PubMed DOI
Sun, H., Chen Q., and Lai H.. 2017. Development of Antibody Therapeutics against Flaviviruses. Int. J. Mol. Sci. 19:19. PubMed PMC
Süss, J., Klaus C., Diller R., Schrader C., Wohanka N., and Abel U.. 2006. TBE incidence versus virus prevalence and increased prevalence of the TBE virus in Ixodes ricinus removed from humans. Int. J. Med. Microbiol. 296(Suppl 40):63–68. 10.1016/j.ijmm.2005.12.005 PubMed DOI
Thompson, B.S., Moesker B., Smit J.M., Wilschut J., Diamond M.S., and Fremont D.H.. 2009. A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog. 5:e1000453. 10.1371/journal.ppat.1000453 PubMed DOI PMC
Tiller, T., Tsuiji M., Yurasov S., Velinzon K., Nussenzweig M.C., and Wardemann H.. 2007. Autoreactivity in human IgG+ memory B cells. Immunity. 26:205–213. 10.1016/j.immuni.2007.01.009 PubMed DOI PMC
Vorovitch, M.F., Maikova G.B., Chernokhaeva L.L., Romanenko V.V., Karganova G.G., and Ishmukhametov A.A.. 2019. Comparison of the immunogenicity and safety of two pediatric TBE vaccines based on the Far Eastern and European virus subtypes. Adv. Virol. 2019:5323428. 10.1155/2019/5323428 PubMed DOI PMC
Wahala, W.M., Kraus A.A., Haymore L.B., Accavitti-Loper M.A., and de Silva A.M.. 2009. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology. 392:103–113. 10.1016/j.virol.2009.06.037 PubMed DOI PMC
Waldvogel, K., Bossart W., Huisman T., Boltshauser E., and Nadal D.. 1996. Severe tick-borne encephalitis following passive immunization. Eur. J. Pediatr. 155:775–779. 10.1007/BF02002905 PubMed DOI
Wang, Q., Michailidis E., Yu Y., Wang Z., Hurley A.M., Oren D.A., Mayer C.T., Gazumyan A., Liu Z., Zhou Y., et al. . 2020. A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host Microbe. 28:335–349.e6. 10.1016/j.chom.2020.05.010 PubMed DOI PMC
West, A.P. Jr., Diskin R., Nussenzweig M.C., and Bjorkman P.J.. 2012. Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. Proc. Natl. Acad. Sci. USA. 109:E2083–E2090. 10.1073/pnas.1208984109 PubMed DOI PMC
West, A.P. Jr., Scharf L., Horwitz J., Klein F., Nussenzweig M.C., and Bjorkman P.J.. 2013. Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues. Proc. Natl. Acad. Sci. USA. 110:10598–10603. 10.1073/pnas.1309215110 PubMed DOI PMC
Winn, M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., et al. . 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67:235–242. 10.1107/S0907444910045749 PubMed DOI PMC
World Health Organization . 2019. International Travel and Health: Tick-borne Encephalitis. www.who.int/ith/diseases/tbe/en
Xu, M., Zuest R., Velumani S., Tukijan F., Toh Y.X., Appanna R., Tan E.Y., Cerny D., MacAry P., Wang C.-I., and Fink K.. 2017. A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. NPJ Vaccines. 2:2. 10.1038/s41541-016-0003-3 PubMed DOI PMC
Yang, X., Qi J., Peng R., Dai L., Gould E.A., Gao G.F., and Tien P.. 2019. Molecular Basis of a Protective/Neutralizing Monoclonal Antibody Targeting Envelope Proteins of both Tick-Borne Encephalitis Virus and Louping Ill Virus. J. Virol. 93:e02132-18. 10.1128/JVI.02132-18 PubMed DOI PMC
Ye, J., Ma N., Madden T.L., and Ostell J.M.. 2013. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41(Web Server issue, W1):W34-W40. 10.1093/nar/gkt382 PubMed DOI PMC
Yoshii, K. 2019. Epidemiology and pathological mechanisms of tick-borne encephalitis. J. Vet. Med. Sci. 81:343–347. 10.1292/jvms.18-0373 PubMed DOI PMC
Zeman, P., and Bene C.. 2004. A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming? Int. J. Med. Microbiol. 293(Suppl 37):48–54. 10.1016/S1433-1128(04)80008-1 PubMed DOI
Zhao, H., Xu L., Bombardi R., Nargi R., Deng Z., Errico J.M., Nelson C.A., Dowd K.A., Pierson T.C., Crowe J.E. Jr., et al. . 2020. Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. J. Exp. Med. 217:e20191792. 10.1084/jem.20191792 PubMed DOI PMC
Enhanced RNAi does not provide efficient innate antiviral immunity in mice
Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients
Human antibodies in Mexico and Brazil neutralizing tick-borne flaviviruses
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?