Influence of the pre-membrane and envelope proteins on structure, pathogenicity, and tropism of tick-borne encephalitis virus

. 2025 Sep 23 ; 99 (9) : e0087025. [epub] 20250819

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40827915

Grantová podpora
2018-05851 Vetenskapsrådet
2020-06224 Vetenskapsrådet
SMK-1654 Kempestiftelserna
JCK-1827 Kempestiftelserna
95-7202-38 Sigrid Juséliuksen Säätiö
121-8570-56 Sigrid Juséliuksen Säätiö
PRG1154 Eesti Teaduste Akadeemia
23-07160S Grantová Agentura České Republiky

UNLABELLED: Tick-borne encephalitis virus (TBEV) is a neurotropic flavivirus that causes thousands of human infections annually. Viral tropism in the brain is determined by the presence of necessary receptors, entry factors, and the ability of the virus to overcome host defenses. The viral structural proteins, pre-membrane (prM), and envelope (E) play an important role in receptor binding, membrane fusion, particle maturation, and antibody neutralization. To understand how these proteins influence virus distribution and tropism in the brain, we generated a chimeric virus harboring the prM and ectodomain of E from TBEV in the background of the low-pathogenic Langat virus (LGTV). We solved the atomic structures of both the chimeric virus and LGTV to compare them to the known TBEV structure. We show that this chimeric virus remains low-pathogenic, while being structurally and antigenically similar to TBEV. Using 3D optical whole brain imaging combined with immunohistochemistry, we found that both LGTV and the chimeric virus primarily infect the cerebral cortex, with no significant differences in their localization or tropism. In contrast, TBEV shows high infection of the cerebellum and a strong preference toward Purkinje cells, indicating that factors other than the prM and E proteins are important for determining TBEV tropism in the brain. Together, this provides new insights into the roles of the structural and non-structural proteins of tick-borne flaviviruses. IMPORTANCE: Although an effective vaccine exists, there is no treatment for those infected by the tick-borne encephalitis virus (TBEV). This study aimed to better understand how the virus's surface proteins influence viral tropism and pathogenicity. We created a chimeric virus with prM and E proteins of TBEV in the genetic background of the low-pathogenic Langat virus (LGTV). The chimeric virus remained low pathogenic, similar to LGTV. Both viruses infected similar brain regions, while TBEV showed a strong preference for the cerebellum and Purkinje cells. This means that other parts of the virus, such as non-structural proteins or NCR, likely decide how the virus behaves in the brain. This study also presents the first cryogenic electron microscopy structure of LGTV, the first whole-brain imaging of TBEV infection in mouse brain, and a new model system to study surface proteins in tick-borne flaviviruses-laying groundwork for future studies on viral tropism, antibody cross-reactivity, and virus-receptor interaction.

Zobrazit více v PubMed

Süss J. 2003. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine (Auckl) 21 Suppl 1:S19–35. doi: 10.1016/s0264-410x(02)00812-5 PubMed DOI

Haglund M, Günther G. 2003. Tick-borne encephalitis--pathogenesis, clinical course and long-term follow-up. Vaccine (Auckl) 21 Suppl 1:S11–8. doi: 10.1016/s0264-410x(02)00811-3 PubMed DOI

Pulkkinen LIA, Barrass SV, Lindgren M, Pace H, Överby AK, Anastasina M, Bally M, Lundmark R, Butcher SJ. 2023. Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathog 19:e1011125. doi: 10.1371/journal.ppat.1011125 PubMed DOI PMC

White JM, Delos SE, Brecher M, Schornberg K. 2008. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219. doi: 10.1080/10409230802058320 PubMed DOI PMC

Protopopova EV, Sorokin AV, Konovalova SN, Kachko AV, Netesov SV, Loktev VB. 1999. Human laminin binding protein as a cell receptor for the tick-borne encephalitis virus. Zentralblatt für Bakteriologie 289:632–638. doi: 10.1016/S0934-8840(99)80021-8 DOI

Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375:291–298. doi: 10.1038/375291a0 PubMed DOI

Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. 2004. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738. doi: 10.1038/sj.emboj.7600064 PubMed DOI PMC

Füzik T, Formanová P, Růžek D, Yoshii K, Niedrig M, Plevka P. 2018. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 9:436. doi: 10.1038/s41467-018-02882-0 PubMed DOI PMC

Lindqvist R, Rosendal E, Weber E, Asghar N, Schreier S, Lenman A, Johansson M, Dobler G, Bestehorn M, Kröger A, Överby AK. 2020. The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection. J Neuroinflammation 17:284. doi: 10.1186/s12974-020-01943-w PubMed DOI PMC

Stadler K, Allison SL, Schalich J, Heinz FX. 1997. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481. doi: 10.1128/JVI.71.11.8475-8481.1997 PubMed DOI PMC

Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. 2005. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol 64:506–512. doi: 10.1093/jnen/64.6.506 PubMed DOI

Fares M, Cochet-Bernoin M, Gonzalez G, Montero-Menei CN, Blanchet O, Benchoua A, Boissart C, Lecollinet S, Richardson J, Haddad N, Coulpier M. 2020. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation 17:76. doi: 10.1186/s12974-020-01756-x PubMed DOI PMC

Bílý T, Palus M, Eyer L, Elsterová J, Vancová M, Růžek D. 2015. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci Rep 5:10745. doi: 10.1038/srep10745 PubMed DOI PMC

Lindqvist R, Mundt F, Gilthorpe JD, Wölfel S, Gekara NO, Kröger A, Överby AK. 2016. Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J Neuroinflammation 13. doi: 10.1186/s12974-016-0748-7 PubMed DOI PMC

Ahantarig A, Růzek D, Vancová M, Janowitz A, St’astná H, Tesarová M, Grubhoffer L. 2009. Tick-borne encephalitis virus infection of cultured mouse macrophages. Intervirology 52:283–290. doi: 10.1159/000235741 PubMed DOI

Weber E, Finsterbusch K, Lindquist R, Nair S, Lienenklaus S, Gekara NO, Janik D, Weiss S, Kalinke U, Överby AK, Kröger A. 2014. Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses. J Virol 88:12202–12212. doi: 10.1128/JVI.01215-14 PubMed DOI PMC

Mandl CW, Iacono-Connors L, Wallner G, Holzmann H, Kunz C, Heinz FX. 1991. Sequence of the genes encoding the structural proteins of the low-virulence tick-borne flaviviruses Langat TP21 and Yelantsev. Virology (Auckl) 185:891–895. doi: 10.1016/0042-6822(91)90567-u PubMed DOI

Maffioli C, Grandgirard D, Engler O, Leib SL. 2014. A tick-borne encephalitis model in infant rats infected with langat virus. J Neuropathol Exp Neurol 73:1107–1115. doi: 10.1097/NEN.0000000000000131 PubMed DOI

Chotiwan N, Rosendal E, Willekens SMA, Schexnaydre E, Nilsson E, Lindqvist R, Hahn M, Mihai IS, Morini F, Zhang J, Ebel GD, Carlson L-A, Henriksson J, Ahlgren U, Marcellino D, Överby AK. 2023. Type I interferon shapes brain distribution and tropism of tick-borne flavivirus. Nat Commun 14:2007. doi: 10.1038/s41467-023-37698-0 PubMed DOI PMC

Wang H-J, Li X-F, Ye Q, Li S-H, Deng Y-Q, Zhao H, Xu Y-P, Ma J, Qin E-D, Qin C-F. 2014. Recombinant chimeric Japanese encephalitis virus/tick-borne encephalitis virus is attenuated and protective in mice. Vaccine (Auckl) 32:949–956. doi: 10.1016/j.vaccine.2013.12.050 PubMed DOI

Rumyantsev AA, Goncalvez AP, Giel-Moloney M, Catalan J, Liu Y, Gao Q, Almond J, Kleanthous H, Pugachev KV. 2013. Single-dose vaccine against tick-borne encephalitis. Proc Natl Acad Sci USA 110:13103–13108. doi: 10.1073/pnas.1306245110 PubMed DOI PMC

Pletnev AG, Bray M, Huggins J, Lai CJ. 1992. Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci USA 89:10532–10536. doi: 10.1073/pnas.89.21.10532 PubMed DOI PMC

Teterina NL, Maximova OA, Kenney H, Liu G, Pletnev AG. 2016. MicroRNA-based control of tick-borne flavivirus neuropathogenesis: challenges and perspectives. Antiviral Res 127:57–67. doi: 10.1016/j.antiviral.2016.01.003 PubMed DOI PMC

Haglund M, Vene S, Forsgren M, Günther G, Johansson B, Niedrig M, Plyusnin A, Lindquist L, Lundkvist A. 2003. Characterisation of human tick-borne encephalitis virus from Sweden. J Med Virol 71:610–621. doi: 10.1002/jmv.10497 PubMed DOI

Pulkkinen LIA, Barrass SV, Domanska A, Överby AK, Anastasina M, Butcher SJ. 2022. Molecular organisation of tick-borne encephalitis virus. Viruses 14:792. doi: 10.3390/v14040792 PubMed DOI PMC

Kurhade C, Zegenhagen L, Weber E, Nair S, Michaelsen-Preusse K, Spanier J, Gekara NO, Kröger A, Överby AK. 2016. Type I Interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1. J Neuroinflammation 13:22. doi: 10.1186/s12974-016-0487-9 PubMed DOI PMC

Willekens SMA, Morini F, Mediavilla T, Nilsson E, Orädd G, Hahn M, Chotiwan N, Visa M, Berggren P-O, Ilegems E, Överby AK, Ahlgren U, Marcellino D. 2024. An MR-based brain template and atlas for optical projection tomography and light sheet fluorescence microscopy in neuroscience. Front Neurosci 18:1328815. doi: 10.3389/fnins.2024.1328815 PubMed DOI PMC

Khasnatinov MA, Tuplin A, Gritsun DJ, Slovak M, Kazimirova M, Lickova M, Havlikova S, Klempa B, Labuda M, Gould EA, Gritsun TS. 2016. Tick-borne encephalitis virus structural proteins are the primary viral determinants of non-viraemic transmission between ticks whereas non-structural proteins affect cytotoxicity. PLoS One 11:e0158105. doi: 10.1371/journal.pone.0158105 PubMed DOI PMC

Tsetsarkin KA, Maximova OA, Liu G, Kenney H, Teterina NL, Pletnev AG. 2019. Stable and highly immunogenic microrna-targeted single-dose live attenuated vaccine candidate against tick-borne encephalitis constructed using genetic backbone of langat virus. mBio 10:e02904-18. doi: 10.1128/mBio.02904-18 PubMed DOI PMC

McAuley AJ, Sawatsky B, Ksiazek T, Torres M, Korva M, Lotrič-Furlan S, Avšič-Županc T, von Messling V, Holbrook MR, Freiberg AN, Beasley DWC, Bente DA. 2017. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection. NPJ Vaccines 2:5. doi: 10.1038/s41541-017-0009-5 PubMed DOI PMC

Svoboda P, Haviernik J, Bednar P, Matkovic M, Cervantes Rincón T, Keeffe J, Palus M, Salat J, Agudelo M, Nussenzweig MC, Cavalli A, Robbiani DF, Ruzek D. 2023. A combination of two resistance mechanisms is critical for tick-borne encephalitis virus escape from a broadly neutralizing human antibody. Cell Rep 42:113149. doi: 10.1016/j.celrep.2023.113149 PubMed DOI PMC

Santos-Peral A, Luppa F, Goresch S, Nikolova E, Zaucha M, Lehmann L, Dahlstroem F, Karimzadeh H, Thorn-Seshold J, Winheim E, Schuster E-M, Dobler G, Hoelscher M, Kümmerer BM, Endres S, Schober K, Krug AB, Pritsch M, Barba-Spaeth G, Rothenfusser S. 2024. Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat Commun 15:1696. doi: 10.1038/s41467-024-45806-x PubMed DOI PMC

Yoshii K, Yanagihara N, Ishizuka M, Sakai M, Kariwa H. 2013. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J Gen Virol 94:2249–2258. doi: 10.1099/vir.0.055269-0 PubMed DOI

Lattová E, Straková P, Pokorná-Formanová P, Grubhoffer L, Bell-Sakyi L, Zdráhal Z, Palus M, Ruzek D. 2020. Comprehensive N-glycosylation mapping of envelope glycoprotein from tick-borne encephalitis virus grown in human and tick cells. Sci Rep 10:13204. doi: 10.1038/s41598-020-70082-2 PubMed DOI PMC

Parvez MSA, Ohtsuki G. 2022. Acute cerebellar inflammation and related ataxia: mechanisms and pathophysiology. Brain Sci 12:367. doi: 10.3390/brainsci12030367 PubMed DOI PMC

Moreno H, Möller R, Fedeli C, Gerold G, Kunz S. 2019. Comparison of the innate immune responses to pathogenic and nonpathogenic clade B new world arenaviruses. J Virol 93:19. doi: 10.1128/JVI.00148-19 PubMed DOI PMC

Niedrig M, Klockmann U, Lang W, Roeder J, Burk S, Modrow S, Pauli G. 1994. Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol 38:141–149. PubMed

Schwaiger M, Cassinotti P. 2003. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J Clin Virol 27:136–145. doi: 10.1016/s1386-6532(02)00168-3 PubMed DOI

Punjani Ali, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. doi: 10.1038/nmeth.4169 PubMed DOI

Punjani A., Zhang H, Fleet DJ. 2020. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17:1214–1221. doi: 10.1038/s41592-020-00990-8 PubMed DOI

Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, Carazo JM, Sorzano COS, Vargas J. 2021. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol 4:874. doi: 10.1038/s42003-021-02399-1 PubMed DOI PMC

Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877. doi: 10.1107/S2059798319011471 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. doi: 10.1002/pro.3943 PubMed DOI PMC

Adams PD, Afonine PV, Bunkóczi G, Chen VB, Echols N, Headd JJ, Hung L-W, Jain S, Kapral GJ, Grosse Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner RD, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2011. The Phenix software for automated determination of macromolecular structures. Methods 55:94–106. doi: 10.1016/j.ymeth.2011.07.005 PubMed DOI PMC

Croll TI. 2018. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74:519–530. doi: 10.1107/S2059798318002425 PubMed DOI PMC

Hörnblad A, Cheddad A, Ahlgren U. 2011. An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution. Islets 3:204–208. doi: 10.4161/isl.3.4.16417 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...