Comprehensive N-glycosylation mapping of envelope glycoprotein from tick-borne encephalitis virus grown in human and tick cells

. 2020 Aug 06 ; 10 (1) : 13204. [epub] 20200806

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32764711

Grantová podpora
BB/P024270/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 32764711
PubMed Central PMC7411051
DOI 10.1038/s41598-020-70082-2
PII: 10.1038/s41598-020-70082-2
Knihovny.cz E-zdroje

Tick-borne encephalitis virus (TBEV) is the causative agent of severe human neuroinfections that most commonly occur after a tick bite. N-Glycosylation of the TBEV envelope (E) glycoprotein is critical for virus egress in mammalian cells, but not in tick cells. In addition, glycans have been reported to mask specific antigenic sites from recognition by neutralizing antibodies. In this regard, the main purpose of our study was to investigate the profile of N-glycans linked to the E protein of TBEV when grown in human neuronal cells and compare it to the profile of virus grown in tick cells. Mass spectrometric analysis revealed significant differences in these profiles. High-mannose glycan with five mannose residues (Man5GlcNAc2), a complex biantennary galactosylated structure with core fucose (Gal2GlcNAc2Man3GlcNAc2Fuc), and a group of hybrid glycans with the composition Gal0-1GlcNAc1Man3-5GlcNAc2Fuc0-1 were confirmed as the main asparagine-linked oligosaccharides on the surface of TBEV derived from human neuronal cells. The observed pattern was supported by examination of the glycopeptides, providing additional information about the glycosylation site in the E protein. In contrast, the profile of TBEV grown in tick cells showed that paucimannose (Man3-4 GlcNAc2Fuc0-1) and high-mannose structures with five and six mannoses (Man5-6GlcNAc2) were major glycans on the viral surface. The reported results complement existing crystallography and cryoelectron tomography data on the E protein structure and could be instrumental for designing carbohydrate-binding antiviral agents active against TBEV.

Zobrazit více v PubMed

Ruzek D, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI

Simmonds P, et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 2017;15:161–168. doi: 10.1038/nrmicro.2016.177. PubMed DOI

Paulsen KM, et al. Experimental infection of lambs with tick-borne encephalitis virus and co-infection with Anaplasma phagocytophilum. PLoS ONE. 2019;14:e0226836. doi: 10.1371/journal.pone.0226836. PubMed DOI PMC

Levanov L, et al. Diagnostic potential and antigenic properties of recombinant tick-borne encephalitis virus subviral particles expressed in mammalian cells from Semliki Forest virus replicons. J. Clin. Microbiol. 2014;52:814–822. doi: 10.1128/JCM.02488-13. PubMed DOI PMC

Zhang W, et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Mol. Biol. 2003;10:907–912. doi: 10.1038/nsb990. PubMed DOI PMC

Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to vero cells. J. Virol. 2001;75:7769–7773. doi: 10.1128/JVI.75.16.7769-7773.2001. PubMed DOI PMC

Yang M, Huang J, Simon R, Wang L-X, MacKerell AD. Conformational heterogeneity of the HIV envelope glycan shield. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Heinz FX, Stiasny K. Flaviviruses and their antigenic structure. J. Clin. Virol. 2012;55:289–295. doi: 10.1016/j.jcv.2012.08.024. PubMed DOI

Gritsun, T. S., Nuttall, P. A. & Gould, E. A. Tick-Borne Flaviviruses. in Advances in Virus Research (eds. Chambers, T. J. & Monath, T. P.) vol. 61 317–371 (Academic Press, 2003). PubMed

Goto A, et al. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23:3043–3052. doi: 10.1016/j.vaccine.2004.11.068. PubMed DOI

Lorenz IC, et al. Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J. Virol. 2003;77:4370–4382. doi: 10.1128/JVI.77.7.4370-4382.2003. PubMed DOI PMC

Hanna SL, et al. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J. Virol. 2005;79:13262–13274. doi: 10.1128/JVI.79.21.13262-13274.2005. PubMed DOI PMC

Beasley DWC, et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 west nile virus strains. J. Virol. 2005;79:8339–8347. doi: 10.1128/JVI.79.13.8339-8347.2005. PubMed DOI PMC

Yoshii K, Yanagihara N, Ishizuka M, Sakai M, Kariwa H. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J. Gen. Virol. 2013;94:2249–2258. doi: 10.1099/vir.0.055269-0. PubMed DOI

Annamalai AS, et al. Zika virus encoding nonglycosylated envelope protein is attenuated and defective in neuroinvasion. J. Virol. 2017;91:e01348-17. doi: 10.1128/JVI.01348-17. PubMed DOI PMC

Mossenta M, Marchese S, Poggianella M, Slon Campos JL, Burrone OR. Role of N-glycosylation on Zika virus E protein secretion, viral assembly and infectivity. Biochem. Biophys. Res. Commun. 2017;492:579–586. doi: 10.1016/j.bbrc.2017.01.022. PubMed DOI

Winkler G, Heinz FX, Kunz C. Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in antigenic structure. Virology. 1987;159:237–243. doi: 10.1016/0042-6822(87)90460-0. PubMed DOI

Šenigl F, Grubhoffer L, Kopecky J. Differences in maturation of tick-borne encephalitis virus in mammalian and tick cell line. INT. 2006;49:239–248. PubMed

Jarvis DL. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology. 2003;310:1–7. doi: 10.1016/S0042-6822(03)00120-X. PubMed DOI PMC

Hacker K, White L, de Silva AM. N-Linked glycans on dengue viruses grown in mammalian and insect cells. J. Gen. Virol. 2009;90:2097–2106. doi: 10.1099/vir.0.012120-0. PubMed DOI PMC

Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI

Füzik T, et al. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018;9:436. doi: 10.1038/s41467-018-02882-0. PubMed DOI PMC

Grubhoffer L, Guirakhoo F, Heinz FX, Kunz C. Interaction of tick-borne encephalitis virus protein E with labelled lectins. Clin. Biochem. 1990;7:313–319.

Pospisil L, Jandasek L, Pesek J. Isolation of new strains of meningoencephalitis virus in the Brno region during the summer of 1953. Lek List. 1954;9:3–5. PubMed

Cinatl J, et al. Differentiation arrest in neuroblastoma cell culture. J. Cancer Res. Clin. Oncol. 1990;116:9–14.

Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI

Růžek D, Bell-Sakyi L, Kopecký J, Grubhoffer L. Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res. 2008;137:142–146. doi: 10.1016/j.virusres.2008.05.013. PubMed DOI

Lattová E, Bryant J, Skřičková J, Zdráhal Z, Popovič M. Efficient procedure for N-glycan analyses and detection of endo H-like activity in human tumor specimens. J. Proteome Res. 2016;15:2777–2786. doi: 10.1021/acs.jproteome.6b00346. PubMed DOI

Lattová E, et al. N-Glycan profiling of lung adenocarcinoma in patients at different stages of disease. Mod. Pathol. 2020;33:1146–1156. doi: 10.1038/s41379-019-0441-3. PubMed DOI

Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984;131:209–217. doi: 10.1016/0008-6215(84)85242-8. DOI

Lattová E, Skřičková J, Zdráhal Z. Applicability of phenylhydrazine labeling for structural studies of fucosylated N-glycans. Anal. Chem. 2019;91:7985–7990. doi: 10.1021/acs.analchem.9b01321. PubMed DOI

Domon B, Costello C. A systematic nomenclature for carbohydrate fragmentations in fab-ms/ms spectra of glycoconjugates. Glycoconjugate J. 1988;5:397–409. doi: 10.1007/BF01049915. DOI

Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 1984;11:601. doi: 10.1002/bms.1200111109. PubMed DOI

Bressanelli S, et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 2004;23:728–738. doi: 10.1038/sj.emboj.7600064. PubMed DOI PMC

Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15:211–218. doi: 10.1016/j.tim.2007.03.003. PubMed DOI PMC

Moudy RM, Zhang B, Shi P-Y, Kramer LD. West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. Virology. 2009;387:222–228. doi: 10.1016/j.virol.2009.01.038. PubMed DOI PMC

Wen D, et al. N-glycosylation of viral E protein is the determinant for vector midgut invasion by flaviviruses. mBio. 2018;9:e00046-18. doi: 10.1128/mBio.00046-18. PubMed DOI PMC

Carbaugh DL, Baric RS, Lazear HM. Envelope protein glycosylation mediates zika virus pathogenesis. J. Virol. 2019;93:e00113–e119. doi: 10.1128/JVI.00113-19. PubMed DOI PMC

Sterba J, Vancova M, Sterbova J, Bell-Sakyi L, Grubhoffer L. The majority of sialylated glycoproteins in adult Ixodes ricinus ticks originate in the host, not the tick. Carbohydr. Res. 2014;389:93–99. doi: 10.1016/j.carres.2014.02.017. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...