Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors

. 2022 Jan 11 ; 12 (1) : 491. [epub] 20220111

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35017574

Grantová podpora
grant No. ANR-10-LABEX-62-IBEID French Government's Investissement d'Avenir program, Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases"
No. 20-14325S Czech Science Foundation project

Odkazy

PubMed 35017574
PubMed Central PMC8752753
DOI 10.1038/s41598-021-04498-9
PII: 10.1038/s41598-021-04498-9
Knihovny.cz E-zdroje

Up to 170 tick-borne viruses (TBVs) have been identified to date. However, there is a paucity of information regarding TBVs and their interaction with respective vectors, limiting the development of new effective and urgently needed control methods. To overcome this gap of knowledge, it is essential to reproduce transmission cycles under controlled laboratory conditions. In this study we assessed an artificial feeding system (AFS) and an immersion technique (IT) to infect Ixodes ricinus ticks with tick-borne encephalitis (TBE) and Kemerovo (KEM) virus, both known to be transmitted predominantly by ixodid ticks. Both methods permitted TBEV acquisition by ticks and we further confirmed virus trans-stadial transmission and onward transmission to a vertebrate host. However, only artificial feeding system allowed to demonstrate both acquisition by ticks and trans-stadial transmission for KEMV. Yet we did not observe transmission of KEMV to mice (IFNAR-/- or BALB/c). Artificial infection methods of ticks are important tools to study tick-virus interactions. When optimally used under laboratory settings, they provide important insights into tick-borne virus transmission cycles.

Zobrazit více v PubMed

Springer A, Glass A, Probst J, Strube C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. Parasitol. Res. 2021 doi: 10.1007/s00436-020-07033-3. PubMed DOI PMC

Wikel SK. Ticks and tick-borne infections: Complex ecology, agents, and host interactions. Vet. Sci. 2018;5(2):60. PubMed PMC

Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:3–14. PubMed

Labuda M, Nuttall PA. Tick-borne viruses. Parasitology. 2004;129:221–245. PubMed

Shi J, Hu Z, Deng F, Shen S. Tick-borne viruses. Virol. Sin. 2018;33(1):21–43. PubMed PMC

Bonnet S, Liu XY. Laboratory artificial infection of hard ticks: A tool for the analysis of tick-borne pathogen transmission. Acarologia. 2012;52(4):453–464.

Nuttall PA, Jones LD, Labuda M, Kaufman WR. Adaptations of arboviruses to ticks. J. Med. Entomol. 1994;31(1):1–9. PubMed

Jones LD, Hodgson E, Nuttall PA. Enhancement of virus transmission by tick salivary glands. J. Gen. Virol. 1989;70(7):1895–1898. PubMed

de la Fuente J, et al. Tick–pathogen interactions and vector competence: Identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017;7(April):1–13. PubMed PMC

Belova OA, et al. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks Tick Borne Dis. 2017;8(6):895–906. PubMed

Slovák M, et al. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5(6):962–969. PubMed

Hurlbut H, Thomas J. The experimental host range of the arthropod-borne animal viruses in arthropods. Virology. 1960;12:391–407. PubMed

Talactac MR, et al. Vector competence of Haemaphysalis longicornis ticks for a Japanese isolate of the Thogoto virus. Sci. Rep. 2018;8(1):1–8. PubMed PMC

Bonnet S, et al. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology. 2007;134(2):197–207. PubMed

Policastro PF, Schwan TG. Experimental infection of Ixodes scapularis Larvae (Acari: Ixodidae) by immersion in low passage cultures of Borrelia burgdorferi. J. Med. Entomol. 2003;40(3):364–370. PubMed

Bonnet S, Brisseau N, Hermouet A, Jouglin M, Chauvin A. Experimental in vitro transmission of Babesia sp. (EU1) by Ixodes ricinus. Vet. Res. 2009;40(3):1–8. PubMed PMC

Cotté V, et al. Transmission of Bartonella henselae by Ixodes ricinus. Emerg. Infect. Dis. 2008;14(7):1074–1080. PubMed PMC

Wechtaisong W, Bonnet SI, Lien YY, Te Chuang S, Tsai YL. Transmission of bartonella henselae within rhipicephalus sanguineus: Data on the potential vector role of the tick. PLoS Negl. Trop. Dis. 2020;14(10):1–14. PubMed PMC

Liu XY, Cote M, Paul REL, Bonnet SI. Impact of feeding system and infection status of the blood meal on Ixodes ricinus feeding. Ticks Tick Borne Dis. 2014;5(3):323–328. PubMed

Reis C, et al. Vector competence of the tick Ixodes ricinus for transmission of Bartonella birtlesii. PLoS Negl. Trop. Dis. 2011;5(5):1–6. PubMed PMC

Mitlzel DN, Wolfinbarger JB, Long DR, Masnick M, Best SM, Bloom ME. Tick-borne flavivirus infection in Ixodes scapularis larvae: Development of a novel method for synchronous viral infection of ticks. Virology. 2007;365(2):410–418. PubMed PMC

Labuda M, et al. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006;2(4):251–259. PubMed PMC

Labuda M, et al. Non-viraemic transmission of tick-borne encephalitis virus: A mechanism for arbovirus survival in nature. Experientia. 1993;49(9):802–805. PubMed

Labuda M, et al. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219(2):357–366. PubMed

Rizzoli A, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public Health. 2014;2:1–26. PubMed PMC

Valarcher JF, Hägglund S, Juremalm M, Blomqvist G. Tick-borne encephalitis. Rev. Sci. Tech. Off. Int. Epiz. 2015;34(2):453–466. PubMed

Chumakov M. Report on the isolation from Ixodes persulcatus ticks and from patients in western Siberia of a virus differing from the agent of tick-borne encephalitis. Acta Virol. 1963;7:82–83. PubMed

Tkachev S, Panov V, Dobler G, Tikunova N. First detection of Kemerovo virus in Ixodes pavlovskyi and Ixodes persulcatus ticks collected in Novosibirsk region, Russia. Ticks Tick Borne Dis. 2014;5(5):494–496. PubMed

Dedkov VG, et al. Prevalence of Kemerovo virus in ixodid ticks from the Russian Federation. Ticks Tick Borne Dis. 2014;5(6):651–655. PubMed

Chihota CM, Rennie LF, Kitching RP, Mellor PS. Mechanical transmission of lumpy skin disease virus by Aedes. Epidemiol. Infect. 2001;126:317–321. PubMed PMC

Brault V, Uzest M, Monsion B, Jacquot E, Blanc S. Aphids as transport devices for plant viruses. Comptes Rendus Biol. 2010;333(6–7):524–538. PubMed

Gritsun TS, Nuttall PA, Gould EA. Tick-borne flaviviruses. Adv. Virus Res. 2003;61:317–371. PubMed

Steele GM, Nuttall PA. Difference in vector competence of two species of sympatric ticks, Amblyomma variegatum and Rhipicephalus appendiculatus, for Dugbe virus (Nairovirus, Bunyaviridae) Virus Res. 1989;14(1):73–84. PubMed

Mandl CW. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 2005;111(2):161–174. PubMed

Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: Diversity, identity, and cell entry. Front. Immunol. 2018;9:2180. PubMed PMC

Hassan SH, Roy P. Expression and functional characterization of Bluetongue Virus VP2 protein: Role in cell entry. J. Virol. 1999;73(12):9832–9842. PubMed PMC

Patel A, Roy P. The molecular biology of Bluetongue virus replication. Virus Res. 2014;182:5–20. PubMed PMC

Mertens PPC, et al. Enhanced infectivity of modified bluetongue virus particles for two insect cell lines and for two Culicoides vector species. Virology. 1996;217(2):582–593. PubMed

Tan B-H, Nason E, Staeuber N, Jiang W, Monastryrskaya K, Roy P. RGD tripeptide of Bluetongue Virus VP7 protein is responsible for core attachment to culicoides cells. J. Virol. 2001;75(8):3937–3947. PubMed PMC

Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 2017;7:1–23. PubMed PMC

Libikova H, Rehacek J, Somogyiavo J. Viruses related to the Kemerovo virus in Ixodes ricinus ticks in Czechoslovakia. Acta Virol. 1965;9:76–82. PubMed

Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: Pathways, effectors, and connections. J. Mol. Biol. 2013;425(24):4921–4936. PubMed PMC

Schnettler E, et al. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 2014;42(14):9436–9446. PubMed PMC

Hornok S, Horváth G, Jongejan F, Farkas R. Ixodid ticks on ruminants, with on-host initiated moulting (apolysis) of Ixodes, Haemaphysalis and Dermacentor larvae. Vet. Parasitol. 2012;187(1–2):350–353. PubMed

Liebig K, et al. Tick populations from endemic and non-endemic areas in Germany show differential susceptibility to TBEV. Sci. Rep. 2020 doi: 10.1038/s41598-020-71920-z. PubMed DOI PMC

Ciota AT, et al. Effects of Zika virus strain and Aedes mosquito species on vector competence. Emerg. Infect. Dis. 2017;23(7):1110–1117. PubMed PMC

Zouache K, et al. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc. R. Soc. B Biol. Sci. 2014;281(1792):20141078. PubMed PMC

Paslaru AI, Mathis A, Torgerson P, Veronesi E. Vector competence of pre-alpine Culicoides (Diptera: Ceratopogonidae) for bluetongue virus serotypes 1, 4 and 8. Parasit. Vectors. 2018;11(1):1–12. PubMed PMC

Moutailler S, Krida G, Schaffner F, Vazeille M, Failloux AB. Potential vectors of Rift Valley fever virus in the Mediterranean region. Vector-Borne Zoonotic Dis. 2008;8(6):749–754. PubMed

Vega-Rua A, Zouache K, Girod R, Failloux A-B, Lourenco-de-Oliveira R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya Virus. J. Virol. 2014;88(11):6294–6306. PubMed PMC

Veronesi E, et al. Measurement of the infection and dissemination of Bluetongue Virus in culicoides biting midges using a semi-quantitative RT-PCR assay and isolation of infectious virus. PLoS ONE. 2013;8(8):1–8. PubMed PMC

Wallner G, et al. Characterization and complete genome sequences of high- and low-virulence variants of tick-borne encephalitis virus. J. Gen. Virol. 1996;77(5):1035–1042. PubMed

Yasumura Y, Kawakita Y. Studies on SV40 in tissue culture-preliminary step for cancer research in vitro. Nihon Rinsho. 1963;21:1201–1212.

Sato M, Maeda N, Yoshida H, Urade M, Saito S. Plaque formation of herpes virus hominis type 2 and rubella virus in variants isolated from the colonies of BHK21/WI-2 cells formed in soft agar. Arch. Virol. 1977;53(3):269–273. PubMed

Mohd Jaafar F, et al. Immunisation with bacterial expressed VP2 and VP5 of bluetongue virus (BTV) protect α/β interferon-receptor knock-out (IFNAR-/-) mice from homologous lethal challenge. Vaccine. 2014;32(32):4059–4067. PubMed

Mohd Jaafar F, Attoui H, Mertens PPC, De Micco P, De Lamballerie X. Structural organization of an encephalitic human isolate of Banna virus (genus Seadornavirus, family Reoviridae ) Printed in Great Britain. J. Gen. Virol. 2005;86:1147–1157. PubMed

Helmová R, Hönig V, Tykalová H, Palus M, Bell-Sakyi L, Grubho L. Tick-borne encephalitis virus adaptation in different host environments and existence of quasispecies. Viruses. 2020;12(8):1–17. PubMed PMC

Huang S, et al. Immune response in mice that lack the interferon-gamma receptor (see comments) Science. 1993;259:1742–1745. PubMed

Müller U, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264:1918–1921. PubMed

Weber E, et al. Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses. J. Virol. 2014;88(21):12202–12212. PubMed PMC

Karabatsos N. International Catalogue of Arboviruses, Including Certain Other Viruses of Vertebrates. 3. American Society of Tropical Medicine and Hygiene for The Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses; 1985.

Calvo-Pinilla E, Rodríguez-Calvo T, Anguita J, Sevilla N, Ortego J. Establishment of a bluetongue virus infection model in mice that are deficient in the alpha/beta interferon receptor. PLoS ONE. 2009;4(4):e5171. PubMed PMC

Haviernik J, et al. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor Galidesivir (BCX4430) and also attenuates the virus in mice. Proceedings. 2020;50(1):12. PubMed PMC

Radda A, Hofmann H, Pretzmann G. Threshold of viraemia in Apodemus flavicollis for infection of Ixodes ricinus with tick-borne encephalitis virus. Acta Virol. 1969;13(1):74–77. PubMed

Chunikhin SP, Kurenkov V. Viraemia in Clethrionomys glareolus—A new ecological marker of tick-borne encephalitis virus. Acta Virol. 1979;23(3):257–260. PubMed

Mateos Hernandez L. A capsule-based model for immature hard tick stages infestation on laboratory mice. JoVE. 2020 doi: 10.3791/61430. PubMed DOI

Attoui H, Billoir F, Cantaloube JF, Biagini P, De Micco P, De Lamballerie X. Strategies for the sequence determination of viral dsRNA genomes. J. Virol. Methods. 2000;89(1–2):147–158. PubMed

Gondard M, et al. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog. Dis. 2018;76(8):1–13. PubMed

Schwaiger M, Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J. Clin. Virol. 2003;27:136–145. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Co-infection dynamics of B. afzelii and TBEV in C3H mice: insights and implications for future research

. 2024 Aug 13 ; 92 (8) : e0024924. [epub] 20240711

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...