Co-infection dynamics of B. afzelii and TBEV in C3H mice: insights and implications for future research
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES)
Ecole nationale vétérinaire d'Alfort (EnvA)
Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
ANR-10-LABEX-62-IBEID
Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases
PubMed
38990046
PubMed Central
PMC11320977
DOI
10.1128/iai.00249-24
Knihovny.cz E-zdroje
- Klíčová slova
- C3H mice, co-infection, pathogen fitness, pathogen invasiveness, tick-borne pathogens,
- MeSH
- Borrelia burgdorferi komplex MeSH
- klíšťová encefalitida * virologie MeSH
- koinfekce * mikrobiologie virologie MeSH
- lymeská nemoc * mikrobiologie MeSH
- modely nemocí na zvířatech * MeSH
- myši inbrední C3H * MeSH
- myši MeSH
- viry klíšťové encefalitidy * fyziologie patogenita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.
EPIMIM Laboratoire de Santé Animale Anses Ecole Nationale Vétérinaire d'Alfort Maisons Alfort France
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czechia
Zobrazit více v PubMed
Liu XY, Bonnet SI. 2014. Hard tick factors implicated in pathogen transmission. PLoS Negl Trop Dis 8:e2566. doi:10.1371/journal.pntd.0002566 PubMed DOI PMC
Dantas-Torres F, Chomel BB, Otranto D. 2012. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol 28:437–446. doi:10.1016/j.pt.2012.07.003 PubMed DOI
Rocha SC, Velásquez CV, Aquib A, Al-Nazal A, Parveen N. 2022. Transmission cycle of tick-borne infections and co-infections, animal models and diseases. Pathogens 11:1309. doi:10.3390/pathogens11111309 PubMed DOI PMC
Moniuszko A, Dunaj J, Swięcicka I, Zambrowski G, Chmielewska-Badora J, Zukiewicz-Sobczak W, Zajkowska J, Czupryna P, Kondrusik M, Grygorczuk S, Swierzbinska R, Pancewicz S. 2014. Co-infections with Borrelia species, Anaplasma phagocytophilum and Babesia spp. in patients with tick-borne encephalitis. Eur J Clin Microbiol Infect Dis 33:1835–1841. doi:10.1007/s10096-014-2134-7 PubMed DOI PMC
Hennechart-Collette C, Gonzalez G, Fourniol L, Fraisse A, Beck C, Moutailler S, Bournez L, Dheilly NM, Lacour SA, Lecollinet S, Martin-Latil S, Perelle S. 2022. Method for tick-borne encephalitis virus detection in raw milk products. Food Microbiol 104:104003. doi:10.1016/j.fm.2022.104003 PubMed DOI
Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A, Miller AD, Osolodkin DI, Överby AK, Tikunova N, Tkachev S, Zajkowska J. 2019. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 164:23–51. doi:10.1016/j.antiviral.2019.01.014 PubMed DOI
Amicizia D, Domnich A, Panatto D, Lai PL, Cristina ML, Avio U, Gasparini R. 2013. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccin Immunother 9:1163–1171. doi:10.4161/hv.23802 PubMed DOI PMC
Dai X, Shang G, Lu S, Yang J, Xu J. 2018. A new subtype of Eastern tick-borne encephalitis virus discovered in Qinghai-Tibet plateau, China article. Emerg Microbes Infect 7:74. doi:10.1038/s41426-018-0081-6 PubMed DOI PMC
Kozlova IV, Demina TV, Tkachev SE, Doroshchenko EK, Lisak OV, Verkhozina MM, Karan LS, Dzhioev Y, Paramonov AI, Suntsova OV, Savinova Y, Chernoivanova OO, Ruzek D, Tikunova NV, Zlobin VI. 2018. Characteristics of the baikal subtype of tick-borne encephalitis virus circulating in Eastern Siberia. Acta Biomedica Sci 3:53–60. doi:10.29413/ABS.2018-3.4.9 DOI
Belongia EA, Reed KD, Mitchell PD, Chyou PH, Mueller-Rizner N, Finkel MF, Schriefer ME. 1999. Clinical and epidemiological features of early lyme disease and human granulocytic ehrlichiosis in wisconsin. Clin Infect Dis 29:1472–1477. doi:10.1086/313532 PubMed DOI
Gomez-Chamorro A, Hodžić A, King KC, Cabezas-Cruz A. 2021. Ecological and evolutionary perspectives on tick-borne pathogen co-infections. Curr Res Parasitol Vector Borne Dis 1:100049. doi:10.1016/j.crpvbd.2021.100049 PubMed DOI PMC
Johnson L, Wilcox S, Mankoff J, Stricker RB. 2014. Severity of chronic lyme disease compared to other chronic conditions: a quality of life survey. PeerJ 2:e322. doi:10.7717/peerj.322 PubMed DOI PMC
Barthold SW, de Souza MS, Janotka JL, Smith AL, Persing DH. 1993. Chronic lyme borreliosis in the laboratory mouse. Am J Pathol 143:959–971. PubMed PMC
Clark DC, Brault AC, Hunsperger E. 2012. The contribution of rodent models to the pathological assessment of flaviviral infections of the central nervous system. Arch Virol 157:1423–1440. doi:10.1007/s00705-012-1337-4 PubMed DOI PMC
Holden K, Hodzic E, Feng S, Freet KJ, Lefebvre RB, Barthold SW. 2005. Coinfection with anaplasma phagocytophilum alters Borrelia burgdorferi population distribution in C3H/HeN mice. Infect Immun 73:3440–3444. doi:10.1128/IAI.73.6.3440-3444.2005 PubMed DOI PMC
Thomas V, Anguita J, Barthold SW, Fikrig E. 2001. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of lyme arthritis. Infect Immun 69:3359–3371. doi:10.1128/IAI.69.5.3359-3371.2001 PubMed DOI PMC
Bröker M. 2012. Following a tick bite: double infections by tick-borne encephalitis virus and the Spirochete borrelia and other potential multiple infections. Zoonoses Public Health 59:176–180. doi:10.1111/j.1863-2378.2011.01435.x PubMed DOI
Belongia EA. 2002. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector Borne Zoonotic Dis 2:265–273. doi:10.1089/153036602321653851 PubMed DOI
Porcelli S, Heckmann A, Lagrée A-C, Galon C, Moutailler S, Deshuillers PL. 2023. Exploring the susceptibility of C3H mice to tick-borne encephalitis virus infection: implications for co-infection models and understanding of the disease. Viruses 15:2270. doi:10.3390/v15112270 PubMed DOI PMC
Wu-Chuang A, Mateos-Hernandez L, Maitre A, Rego ROM, Šíma R, Porcelli S, Rakotobe S, Foucault-Simonin A, Moutailler S, Palinauskas V, Aželytė J, Sǐmo L, Obregon D, Cabezas-Cruz A. 2023. Microbiota perturbation by anti-microbiota vaccine reduces the colonization of Borrelia afzelii in Ixodes ricinus. Microbiome 11:151. doi:10.1186/s40168-023-01599-7 PubMed DOI PMC
Wallner G, Mandl CW, Ecker M, Holzmann H, Stiasny K, Kunz C, Heinz FX. 1996. Characterization and complete genome sequences of high- and low-virulence variants of tick-borne encephalitis virus. J Gen Virol 77 ( Pt 5):1035–1042. doi:10.1099/0022-1317-77-5-1035 PubMed DOI
Migné CV, Hönig V, Bonnet SI, Palus M, Rakotobe S, Galon C, Heckmann A, Vyletova E, Devillers E, Attoui H, Ruzek D, Moutailler S. 2022. Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors. Sci Rep 12:491. doi:10.1038/s41598-021-04498-9 PubMed DOI PMC
Mateos-Hernández L, Rakotobe S, Defaye B, Cabezas-Cruz A, Šimo L. 2020. A capsule-based model for immature hard tick stages infestation on laboratory mice. J Vis Exp 161. doi:10.3791/61430 PubMed DOI
Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, Chirico J, van der Wal FJ, Sprong H, Boye Pihl TP, Klitgaard K, Bødker R, Fach P, Moutailler S. 2014. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol 4:103. doi:10.3389/fcimb.2014.00103 PubMed DOI PMC
Gondard M, Michelet L, Nisavanh A, Devillers E, Delannoy S, Fach P, Aspan A, Ullman K, Chirico J, Hoffmann B, van der Wal FJ, de Koeijer A, van Solt-Smits C, Jahfari S, Sprong H, Mansfield KL, Fooks AR, Klitgaard K, Bødker R, Moutailler S. 2018. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog Dis 76:1–13. doi:10.1093/femspd/fty083 PubMed DOI
Karvonen A, Jokela J, Laine AL. 2019. Importance of sequence and timing in parasite coinfections. Trends Parasitol 35:109–118. doi:10.1016/j.pt.2018.11.007 PubMed DOI
Djokic V, Primus S, Akoolo L, Chakraborti M, Parveen N. 2018. Age-related differential stimulation of immune response by Babesia microti and Borrelia burgdorferi during acute phase of infection affects disease severity. Front Immunol 9:2891. doi:10.3389/fimmu.2018.02891 PubMed DOI PMC
Djokic V, Akoolo L, Primus S, Schlachter S, Kelly K, Bhanot P, Parveen N. 2019. Protozoan parasite Babesia microti subverts adaptive immunity and enhances lyme disease severity. Front Microbiol 10:1596. doi:10.3389/fmicb.2019.01596 PubMed DOI PMC
Holden K, Boothby JT, Anand S, Massung RF. 2003. Detection of Borrelia burgdorferi, Ehrlichia chaffeensis, and anaplasma phagocytophilum in ticks (Acari: Ixodidae) from a coastal region of California. J Med Entomol 40:534–539. doi:10.1603/0022-2585-40.4.534 PubMed DOI
Coleman JL, LeVine D, Thill C, Kuhlow C, Benach JL. 2005. Babesia microti and Borrelia burgdorferi follow independent courses of infection in mice. J Infect Dis 192:1634–1641. doi:10.1086/496891 PubMed DOI
Rupprecht TA, Koedel U, Fingerle V, Pfister HW. 2008. The pathogenesis of lyme neuroborreliosis: from infection to inflammation. Mol Med 14:205–212. doi:10.2119/2007-00091.Rupprecht PubMed DOI PMC
Casselli T, Divan A, Vomhof-DeKrey EE, Tourand Y, Pecoraro HL, Brissette CA. 2021. A murine model of lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 17:e1009256. doi:10.1371/journal.ppat.1009256 PubMed DOI PMC
Gadila SKG, Rosoklija G, Dwork AJ, Fallon BA, Embers ME. 2021. Detecting Borrelia spirochetes: a case study with validation among autopsy specimens. Front Neurol 12:628045. doi:10.3389/fneur.2021.628045 PubMed DOI PMC
Knapp KL, Rice NA. 2015. Human coinfection with Borrelia burgdorferi and Babesia microti in the United States. J Parasitol Res 2015:587131. doi:10.1155/2015/587131 PubMed DOI PMC
Vaumourin E, Vourc’h G, Gasqui P, Vayssier-Taussat M. 2015. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors 8:545. doi:10.1186/s13071-015-1167-9 PubMed DOI PMC
Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G. 2011. Natural microbe-mediated refractoriness to plasmodium infection in Anopheles gambiae. Science 332:855–858. doi:10.1126/science.1201618 PubMed DOI PMC
Purnell RE, Brocklesby DW, Hendry DJ, Young ER. 1976. Separation and recombination of babesia divergens and ehrlichia hpagocytophila from a field case of redwater from eire. Vet Rec 99:415–417. doi:10.1136/vr.99.21.415 PubMed DOI