Development and evolution of the vertebrate primary mouth
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22804777
PubMed Central
PMC3552417
DOI
10.1111/j.1469-7580.2012.01540.x
Knihovny.cz E-zdroje
- MeSH
- bazální membrána embryologie MeSH
- biologická evoluce * MeSH
- ektoderm embryologie MeSH
- fylogeneze MeSH
- obratlovci embryologie MeSH
- ústa embryologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary-developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates.
Zobrazit více v PubMed
Adams AE. An experimental study of the development of the mouth in the amphibian embryo. J Exp Zool. 1924;40:311–379.
Adams AE. Some effects of the removal of endoderm from the mouth region of the early Amblystoma punctatum embryos. J Exp Zool. 1931;58:147–163.
Ahrens K, Schlosser G. Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Dev Biol. 2005;288:40–59. PubMed
Angotzi AR, Ersland KM, Mungpakdee S, et al. Independent and dynamic reallocation of pitx gene expression during vertebrate evolution, with emphasis on fish pituitary development. Gene. 2008;417:19–26. PubMed
Baek SH, Kioussi C, Briata P, et al. Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci USA. 2003;100:3245–3250. PubMed PMC
Balinsky BI. Korrelationen in den Entwicklung der Mund- und Kiemenregion und des Darmkanales bei den Amphibien. Roux Arch Entw Mech. 1947;143:365–395. PubMed
Ballard WW, Mellinger J, Lachenault H. A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae) J Exp Zool. 1993;267:318–336.
Bassham S, Postlethwait JH. The evolutionary history of placodes: a molecular genetic investigation of the larvacean urochordate Oikopleura dioica. Development. 2005;132:4259–4272. PubMed
de Beer GR. The differentiation of neural crest cells into visceral cartilages and odontoblasts in Amblystoma, and re-examination of the germ-layer theory. Proc R Soc Lond B Biol Sci. 1947;134:377–398. PubMed
Boorman CJ, Shimeld SM. Cloning and expression of a Pitx homeobox gene from the lamprey, a jawless vertebrate. Dev Genes Evol. 2002a;212:349–353. PubMed
Boorman CJ, Shimeld SM. Pitx homeobox genes in Ciona and amphioxus show left-right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evol Dev. 2002b;4:354–365. PubMed
Bordzilovskaya NP, Dettlaff TA, Duhon ST. Developmental-stage series of axolotl embryos. In: Armstrong JB, Malacinski GM, et al., editors. Developmental Biology of the Axolotl. Oxford: Oxford University Press; 1989. pp. 201–219.
Briata P, Ilengo C, Corte G, et al. The Wnt/beta-catenin→Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell. 2003;12:1201–1211. PubMed
Brugmann SA, Pandur PD, Kenyon KL, et al. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development. 2004;131:5871–5881. PubMed
Burdine RD, Schier AF. Conserved and divergent mechanisms in left-right axis formation. Genes Dev. 2000;14:763–776. PubMed
Carmona-Fontaine C, Acuña G, Ellwanger K, et al. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism on Dickkopf1 secreted by the prechordal mesoderm. Dev Biol. 2007;309:208–221. PubMed
Chang WY, KhosrowShahian F, Chang R, et al. xPitx1 plays a role in specifying cement gland and head during early Xenopus development. Genesis. 2001;29:78–90. PubMed
Charles MA, Suh H, Hjalt TA, et al. PITX genes are required for cell survival and Lhx3 activation. Mol Endocrinol. 2005;19:1893–1903. PubMed
Chibon P. L’origine de l’organe adamantin des dents. Etude an mayen du marquage nucléaire de l’ectoderme stomodeal. Ann Embryol Morph. 1970;3:203–213.
Christiaen L, Bourrat F, Joly JS. A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodaeum. Dev Biol. 2005;277:557–566. PubMed
Christiaen L, Jaszczyszyn Y, Kerfant M, et al. Evolutionary modification of mouth position in deuterostomes. Semin Cell Dev Biol. 2007;18:502–511. PubMed
Collazo A, Bolker JA, Keller R. A phylogenetic perspective on teleost gastrulation. Am Nat. 1994;144:133–152.
Colle-Vandevelde A. Sur le dévelloppement embryonnaire de l’épithélium bucco-pharyngien chez Pterophyllum scalare (Téléostéen) C R Assoc Anat. 1966;51:243–249.
Cook MH, Neal HV. Are taste-buds of elasmobranchs endodermal in origin? J Comp Neurol. 1921;33:45–63.
Cooper MS, Virta VC. Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zool Mol Dev Evol. 2007;308B:591–608. PubMed
Cox CJ, Espinoza HM, McWilliams B, et al. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem. 2002;277:25 001–25 010. PubMed
Damas H. Recherches sur le développement de Lampetra fluviatilis L. Contribution à l’étude de la céphalogenèse des Vertébrés. Arch Biol. 1944;55:1–284.
Dean B. Festschrift zum siebenzigsten Geburtstag von Carl von Kupffer. Jena: Gustav Fischer; 1899. On the embryology of Bdellostoma stouti A general account of myxinoid development from the egg and segmentation to hatching; pp. 221–276.
Delarbre C, Gallut C, Barriel V, et al. Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol. 2002;22:184–192. PubMed
Detlaff TA, Ginsburg AS, Schmalhausen OI. Sturgeon Fishes: Developmental Biology and Aquaculture. Berlin, Heidelberg: Springer; 1993.
Dickinson AJ, Sive H. Development of the primary mouth in Xenopus laevis. Dev Biol. 2006;295:700–713. PubMed
Dickinson A, Sive H. Positioning the extreme anterior in Xenopus: cement gland, primary mouth and anterior pituitary. Semin Cell Dev Biol. 2007;18:525–533. PubMed
Dickinson AJ, Sive HL. The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth. Development. 2009;136:1071–1081. PubMed PMC
Diedhiou S, Bartsch P. Staging of the early development of Polypterus (Cladistia: Actinopterygii) In: Kunz-Ramsay YW, Luer CA, Kapoor BG, editors. Development of Non-Teleost Fishes. Enfield: Science Publishers; 2009. pp. 104–169.
Dohrn A. Studien zur Urgeschichte des Wirbeltierkörpers. XII. Thyreoidea und Hypobranchialrinne, Spritzlochsack und Pseudobranchialrinne bei Fischen, Ammocoetes und Tunicaten. Mitteil Zool St Neapel. 1886;7:301–337.
Donoghue PCJ, Sansom IJ. Origin and early evolution of vertebrate skeletonization. Microsc Res Tech. 2002;59:352–372. PubMed
Drysdale TA, Elinson RP. Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning. Development. 1991;111:469–478. PubMed
Eagleson GW, Jenks BG, Van Overbeeke AP. The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis. J Embryol Exp Morphol. 1986;95:1–14. PubMed
Edwards LF. The origin of the pharyngeal teeth of the carp (Cyprinus carpio Linnaeus) Ohio J Sci. 1929;29:93–130.
Esterberg R, Fritz A. dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity. Dev Biol. 2009;325:189–199. PubMed PMC
Fraser GJ, Graham A, Smith MM. Conserved deployment of genes during odontogenesis across osteichthyans. Proc R Soc Lond B Biol Sci. 2004;271:2311–2317. PubMed PMC
Fraser GJ, Cerny R, Soukup V, et al. The odontode explosion: the origin of tooth-like structures in vertebrates. BioEssays. 2010;32:808–817. PubMed PMC
Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development. 1999a;126:4643–4651. PubMed
Gage PJ, Suh H, Camper SA. The bicoid-related Pitx gene family in development. Mamm Genome. 1999b;10:197–200. PubMed
Gammill LS, Sive H. Coincidence of otx2 and BMP4 signaling correlates with Xenopus cement gland formation. Mech Dev. 2000;92:217–226. PubMed
Gess RW, Coates MI, Rubidge BS. A lamprey from the Devonian period of South Africa. Nature. 2006;443:981–984. PubMed
Glavic A, Maris HS, Gloria Feijoo C, et al. Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Dev Biol. 2004;272:89–103. PubMed
Göppert E. Die Entwickelung des Mundes und der Mundhöhle mit Drüsen und Zunge: die Entwickelung der Schwimmblase, der Lunge und des Kehlkopfes bei den Wirbeltieren. In: Hertwig O, editor. Handbuch der vergleichenden und experimentellen Entwickelungslehre der Wirbeltiere Bd. 2 Teil 1. Jena: Gustav Fischer; 1906. pp. 1–108.
Gorbman A. Early development of the hagfish pituitary gland: evidence for the endodermal origin of the adenohypophysis. Am Zool. 1983;23:639–654.
Gorbman A. Hagfish development. Zool Sci. 1997;14:375–390.
Gorbman A. Brain – Hatschek’s pit relationships in amphioxus species. Acta Zool. 1999;80:301–305.
Gorbman A, Tamarin A. Early development of oral, olfactory and adenohypophyseal structures of agnathans and its evolutionary implications. In: Foreman R, Gorbman A, Dodd J, Olsson R, editors. Evolutionary Biology of Primitive Fishes. New York: Plenum Press; 1985. pp. 165–185.
Gorbman A, Tamarin A. Pituitary development in cyclostomes compared to higher vertebrates. In: Yoshimura F, Gorbman A, editors. Pars Distalis of the Pituitary Gland. Amsterdam: Elsevier; 1986. pp. 3–14.
Graham A, Smith A. Patterning the pharyngeal arches. BioEssays. 2001;23:54–61. PubMed
Graham A, Okabe M, Quinlan R. The role of the endodermin the development and evolution of the pharyngeal arches. J Anat. 2005;207:479–487. PubMed PMC
Greil A. Ueber die Genese der Mundhöhlenschleimhaut der Urodelen. Verh anat Ges. 1905;19:25–37.
Greil A. Entwickelungsgeschichte des Kopfes und des Blutgefässsystems von Ceratodus forsteri I. Gesammtentwickelung bis zum Beginn der Blutzirkulation. Denkschr med-naturwiss Ges Jena. 1913;4:661–934.
Hatschek B. The Amphioxus and its Development. London: Swan Sonnenschein; 1893.
Holland LZ, Holland ND. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J Anat. 2001;199:85–98. PubMed PMC
Hollemann T, Pieler T. Xpitx-1: a homeobox gene expressed during pituitary and cement gland formation of Xenopus embryos. Mech Dev. 1999;88:249–252. PubMed
Honma Y, Chiba A, Welsch U. Development of the hypophysis of the arctic lamprey, Lampetra japonica. Fish Physiol Biochem. 1990;8:355–364. PubMed
Janvier P. The phylogeny of the Craniata, with particular reference to the significance of fossil “agnathans”. J Vertebr Paleontol. 1981;1:121–159.
Janvier P. Early Vertebrates. Oxford Monographs on Geology and Geophysics 33. Oxford: Clarendon Press; 1996.
Jaszczyszyn Y, Haeussler M, Heuzé A, et al. Comparison of the expression of medaka (Oryzias latipespitx genes with other vertebrates shows high conservation and a case of functional shuffling in the pituitary. Gene. 2007;406:42–50. PubMed
Johnston JB. The limit between ectoderm and entoderm in the mouth, and the origin of taste buds. Am J Anat. 1910;10:41–67.
Kardong KV. Vertebrates. Comparative Anatomy, Function, Evolution. Dubuque: Wm. C. Brown; 1995.
Kemp A. Unique dentition of lungfish. Microsc Res Tech. 2002;59:435–448. PubMed
Kerr JG. The development of Lepidosiren paradoxa III. Development of the skin and its derivatives. Quart J Micr Sci. 1902;46:418–459.
Kerr JG. The development of Polypterus senegalus Cuv. by J. Graham Kerr, University of Glasgow. In: Kerr JG, editor. The work of John Samuel Budgett, Balfour Student of the University of Cambridge: Being a Collection of His Zoological Papers, together with a Biographical Sketch by A. E. Shipley, F.R.S., and Contributions by Richard Assheton, Edward J. Bles, Edward T. Browne, J. Herbert Budgett and J. Graham Kerr. Cambridge: Cambridge University Press; 1907. pp. 195–290.
Kerr JG. On certain features in the development of the alimentary canal in Lepidosiren and Protopterus. Quart J Micr Sci. 1910;54:483–518.
Kingsley JS, Thyng F. The hypophysis of Amblystoma. Tufts Coll Stud. 1904;1:363–378.
Kioussi C, Briata P, Baek SH, et al. Identification of a Wnt/Dvl/beta-Catenin→Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111:673–685. PubMed
Kozmik Z, Holland ND, Kreslova J, et al. Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol. 2007;306:143–159. PubMed
Kralovic M, Horáček I, Cerny R. Mouth development in the Senegal bichir Polypterus senegalus does not involve the oropharyngeal membrane: possible implications for the ecto-endoderm boundary and tooth initiation. J Appl Ichthyol. 2010;26:179–182.
von Kupffer C. Zur Kopfentwicklung von Bdellostoma. Sitzungsber Ges Morph Phys München. 1899;15:21–35.
von Kupffer C. Studien zur vergleichende Enwicklungsgeschichte des Kopfes der Kranioten 4. Zur Kopfentwicklung von Bdellostoma. München, Leipzig: J. F. Lehmann; 1900.
von Kupffer C. Die Morphogenie des Centralnervensystems. In: Hertwig O, editor. Handbuch der vergleichenden Entwicklungslehre der Wirbeltiere, Bd. 2, Teil 3. Jena: Gustav Fischer; 1906. pp. 1–272.
Kuraku S, Hoshiyama D, Katoh K, et al. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J Mol Evol. 1999;49:729–735. PubMed
Kuratani S, Nobusada Y, Horigome N, et al. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond B. 2001;356:1615–1632. PubMed PMC
Kwon HJ, Bhat N, Sweet EM, et al. Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet. 2010;6:e1001133. PubMed PMC
Lamba P, Hjalt TA, Bernard DJ. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2): generation by alternative translation initiation and mRNA splicing. BMC Mol Biol. 2008;9:31. PubMed PMC
Lanctôt C, Lamolet B, Drouin J. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development. 1997;124:2807–2817. PubMed
Lanctôt C, Gauthier Y, Drouin J. Pituitary homeobox 1 (Ptx1) is differentially expressed during pituitary development. Endocrinology. 1999a;140:1416–1422. PubMed
Lanctôt C, Moreau A, Chamberland M, et al. Hindlimb patterning and mandible development require the Ptx1 gene. Development. 1999b;126:1805–1810. PubMed
Landacre FL. The fate of the neural crest in the head of the Urodeles. J Comp Neurol. 1921;33:1–43.
Lankester ER, Willey A. The development of the atrial chamber of Amphioxus. Quart J Micr Sci. 1890;31:445–466.
Legros R. Développement de la cavité buccale de l’Amphioxus lanceolatus I. Contribution a l’étude de la morphologie de la tête. Arch Anat Micr. 1898;1:497–542.
Lin CR, Kioussi C, O’Connell S, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999;401:279–282. PubMed
Litsiou A, Hanson S, Streit A. A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development. 2005;132:4051–4062. PubMed
Liu W, Selever J, Lu MF, et al. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development. 2003;130:6375–6385. PubMed
Løvtrup S. The Phylogeny of Vertebrata. New York: Wiley; 1977.
Lu MF, Pressman C, Dyer R, et al. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 1999;401:276–278. PubMed
Mallatt J. Ventilation and the origin of jawed vertebrates: a new mouth. Zool J Linn Soc. 1996;117:329–404.
Mallatt J, Chen JY. Fossil sister group of craniates: predicted and found. J Morphol. 2003;258:1–31. PubMed
Mallatt J, Sullivan J. 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol. 1998;15:1706–1718. PubMed
Manni L, Lane NJ, Joly J-S, et al. Neurogenic and non-neurogenic placodes in ascidians. J Exp Zool Mol Dev Evol. 2004;302B:483–504. PubMed
Manni L, Agnoletto A, Zaniolo G, et al. Stomodeal and neurohypophysial placodes in Ciona intestinalis: insights into the origin of the pituitary gland. J Exp Zool Mol Dev Evol. 2005;304B:324–339. PubMed
Marcus E. Zur Entwicklungsgeschichte des Vorderdarmes der Amphibien. Zool Jahrb Anat. 1930;52:405–486.
Mazet F, Hutt JA, Milloz J, et al. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev Biol. 2005;282:494–508. PubMed
McCauley DW, Kuratani S. Cyclostome studies in the context of vertebrate evolution. Zool Sci. 2008;25:953–954. PubMed
Miller SA, Olcott CW. Cell proliferation in chick oral membrane lags behind that of adjacent epithelia at the time of rupture. Anat Rec. 1989;223:204–208. PubMed
Miller SA, Favale AM, Knohl SJ. Role for differential cell proliferation in perforation and rupture of chick pharyngeal closing plates. Anat Rec. 1993;237:408–414. PubMed
Near TJ. Conflict and resolution between phylogenies inferred from molecular and phenotypic data sets for hagfish, lampreys, and gnathostomes. J Exp Zool Mol Dev Evol. 2009;312B:749–761. PubMed
Nelsen OE. Comparative Embryology of the Vertebrates. New York: McGraw-Hill; 1953.
Nikitina N, Sauka-Spengler T, Bronner-Fraser M. Chapter 1. Gene regulatory networks in neural crest development and evolution. Curr Top Dev Biol. 2009;86:1–14. PubMed
Ota KG, Kuratani S. The history of scientific endeavours towards understanding hagfish embryology. Zool Sci. 2006;23:403–418. PubMed
Ota KG, Kuratani S. Developmental biology of hagfishes, with a report on newly obtained embryos of the Japanese inshore hagfish, Eptatretus burgeri. Zool Sci. 2008;25:999–1011. PubMed
Ota KG, Kuraku S, Kuratani S. Hagfish embryology with reference to the evolution of the neural crest. Nature. 2007;446:672–675. PubMed
Ota KG, Fujimoto S, Oisi Y, et al. Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun. 2011;2:373. PubMed PMC
Patthey C, Gunhaga L. Specification and regionalisation of the neural plate border. Eur J Neurosci. 2009;34:1516–1528. PubMed
Pieper M, Eagleson GW, Wosniok W, et al. Origin and segregation of cranial placodes in Xenopus laevis. Dev Biol. 2011;360:257–275. PubMed
Piotrowski T, Nüsslein-Volhard C. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio. Dev Biol. 2000;225:339–356. PubMed
Poelmann RE, Dubois SV, Hermsen C, et al. Cell degeneration and mitosis in the buccopharyngeal and branchial membranes in the mouse embryo. Anat Embryol. 1985;171:187–192. PubMed
Pommereit D, Pieler T, Hollemann T. Xpitx3: a member of the Rieg/Pitx gene family expressed during pituitary and lens formation in Xenopus laevis. Mech Dev. 2001;102:255–257. PubMed
Reisinger E. Entwicklungsgeschichtliche Untersuchungen am Amphibienvorderdarm (Gleichzeitig ein Beitrag zur Keimblattspezifität und zur prospektiven Bedeutung des Mesektoderms) Roux Arch EntwMech. 1933;129:445–501. PubMed
Reiss JO. Early development of chondrocranium in the tailed frog Ascaphus truei (Amphibia: Anura): implications for anuran palatoquadrate homologies. J Morphol. 1997;231:63–100. PubMed
Richardson MK, Admiral J, Wright GM. Developmental anatomy of lampreys. Biol Rev. 2010;85:1–33. PubMed
Romer AS, Parsons TS. The Vertebrate Body. 6th edn. Philadelphia, PA: Saunders; 1986.
Ryan AK, Blumberg B, Rodriguez-Esteban C, et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature. 1998;394:545–551. PubMed
Sato S, Ikeda K, Shioi G, et al. Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev Biol. 2010;344:158–171. PubMed
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J Exp Zool Mol Dev Evol. 2005;304B:347–399. PubMed
Schlosser G. Induction and specification of cranial placodes. Dev Biol. 2006;294:303–351. PubMed
Schlosser G. How old genes make a new head: redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes. Integr Comp Biol. 2007;47:343–359. PubMed
Schlosser G, Ahrens K. Molecular anatomy of placode development in Xenopus laevis. Dev Biol. 2004;271:439–466. PubMed
Schweickert A, Deissler K, Blum M, et al. Pitx1 and Pitx2c are required for ectopic cement gland formation in Xenopus laevis. Genesis. 2001a;30:144–148. PubMed
Schweickert A, Steinbeisser H, Blum M. Differential gene expression of Xenopus Pitx1Pitx2b and Pitx2c during cement gland, stomodeum and pituitary development. Mech Dev. 2001b;107:191–194. PubMed
Senior HD. The development of the heart in shad (Alosa spadissima, Wilson) Am J Anat. 1909;9:211–262.
Shapiro MD, Marks ME, Peichel CL, et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature. 2004;428:717–723. PubMed
Shiratori H, Sakuma R, Watanabe M, et al. Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Mol Cell. 2001;7:137–149. PubMed
Sive H, Bradley L. A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning. Dev Dyn. 1996;205:265–280. PubMed
Sobkow L, Epperlein HH, Herklotz S, et al. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol. 2006;290:386–397. PubMed
Soukup V, Epperlein HH, Horacek I, et al. Dual epithelial origin of vertebrate oral teeth. Nature. 2008;455:795–798. PubMed
St. Amand TR, Zhang Y, Semina EV, et al. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol. 2000;217:323–332. PubMed
Stock DW. The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philos Trans R Soc Lond B. 2001;356:1633–1653. PubMed PMC
Stockard CR. The development of the mouth and gills of Bdellostoma stouti. Am J Anat. 1906;5:481–517.
Streit A. The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol. 2007;51:447–461. PubMed
Ströer WFH. Experimentelle Untersuchungen über die Mundentwicklung bei den Urodelen. Roux Arch EntwMech. 1933;130:131–186. PubMed
Sucré E, Charmantier-Daures M, Grousset E, et al. Early development of the digestive tract (pharynx and gut) in the embryos and pre-larvae of the European sea bass Dicentrarchus labrax. J Fish Biol. 2009;75:1302–1322. PubMed
Suh H, Gage PJ, Drouin J, et al. Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development. 2002;129:329–337. PubMed
Swalla BJ, Smith AB. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspective. Philos Trans R Soc Lond B Biol Sci. 2008;363:1557–1568. PubMed PMC
Szeto DP, Rodriguez-Esteban C, Ryan AK, et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 1999;13:484–494. PubMed PMC
Takahama H, Sasaki F, Watanabe K. Morphological changes in the oral (buccopharyngeal) membrane in urodelan embryos: development of the mouth opening. J Morphol. 1988;195:59–69. PubMed
Takeuchi M, Takahashi M, Okabe M, et al. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol. 2009;332:90–102. PubMed
Teipel H. Beitrag zur Kenntniss der Gymnophionen XVI. Die Zunge. Zeitsch geschicht Anat I. 1932;98:727–746.
Urata M, Yamaguchi N, Henmi Y, et al. Larval development of the oriental lancelet, Branchiostoma belcheri, in laboratory mass culture. Zool Sci. 2007;24:787–797. PubMed
Veeman MT, Newman-Smith E, El-Nachef D, et al. The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev Biol. 2010;344:138–149. PubMed
Veitch E, Begbie J, Schilling TF, et al. Pharyngeal arch patterning in the absence of neural crest. Curr Biol. 1999;9:1481–1484. PubMed
Wallace KN, Pack M. Unique and conserved aspects of gut development in zebrafish. Dev Biol. 2003;255:12–29. PubMed
Wardle FC, Sive HL. What’s your position? The Xenopus cement gland as a paradigm of regional specification. BioEssays. 2003;25:717–726. PubMed
Warga RM, Nüsslein-Volhard C. Origin and development of the zebrafish endoderm. Development. 1999;126:827–838. PubMed
Watanabe K, Sasaki F, Takahama H. The ultrastructure of oral (buccopharyngeal) membrane formation and rupture in the anuran embryo. Anat Rec. 1984;210:513–524. PubMed
Waterman RE. Ultrastructure of oral (buccopharyngeal) membrane formation and rupture in the hamster embryo. Dev Biol. 1977;58:219–229. PubMed
Waterman RE. Formation and perforation of closing plates in the chick embryo. Anat Rec. 1985;211:450–457. PubMed
Waterman RE, Balian G. Indirect immunofluorescent staining of fibronectin associated with the floor of the foregut during formation and rupture of the oral membrane in the chick embryo. Anat Rec. 1980;198:619–635. PubMed
Waterman RE, Kao R. Formation of the mouth opening in the zebrafish embryo. In: O’Hare AMF, editor. Scanning Electron Microscopy/1982/III. Chicago, IL: SEM; 1982. pp. 1249–1257.
Waterman RE, Schoenwolf GC. The ultrastructure of oral (buccopharyngeal) membrane formation and rupture in the chick embryo. Anat Rec. 1980;197:441–470. PubMed
Whitlock KE, Westerfield M. The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. Development. 2000;127:3645–3653. PubMed
Willey A. The later larval development of amphioxus. Quart J Micr Sci. 1891;32:183–234.
Yasui K, Kaji T. The lancelet and ammocoete mouths. Zool Sci. 2008;25:1012–1019. PubMed
Yasui K, Zhang S, Uemura M, et al. Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development. 2000;127:187–195. PubMed
Periderm fate and independence of tooth formation are conserved across osteichthyans
Pre-mandibular pharyngeal pouches in early non-teleost fish embryos
The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits
Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes
Periderm invasion contributes to epithelial formation in the teleost pharynx
Pre-oral gut contributes to facial structures in non-teleost fishes
The Nodal signaling pathway controls left-right asymmetric development in amphioxus