Pre-oral gut contributes to facial structures in non-teleost fishes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28678781
DOI
10.1038/nature23008
PII: nature23008
Knihovny.cz E-zdroje
- MeSH
- endoderm embryologie MeSH
- fylogeneze MeSH
- larva genetika růst a vývoj MeSH
- lebka embryologie MeSH
- maxilofaciální vývoj * genetika MeSH
- rentgenová mikrotomografie MeSH
- ryby anatomie a histologie klasifikace embryologie genetika MeSH
- trávicí systém embryologie MeSH
- ústa embryologie MeSH
- vývojová regulace genové exprese MeSH
- zuby embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the wide variety of adaptive modifications in the oral and facial regions of vertebrates, their early oropharyngeal development is considered strictly uniform. It involves sequential formation of the mouth and pharyngeal pouches, with ectoderm outlining the outer surface and endoderm the inner surface, as a rule. At the extreme anterior domain of vertebrate embryos, the ectoderm and endoderm directly juxtapose and initial development of this earliest ecto-endoderm interface, the primary mouth, typically involves ectodermal stomodeal invagination that limits the anterior expansion of the foregut endoderm. Here we present evidence that in embryos of extant non-teleost fishes, oral (stomodeal) formation is preceded by the development of prominent pre-oral gut diverticula (POGD) between the forebrain and roof of the forming mouth. Micro-computed tomography (micro-CT) imaging of bichir, sturgeon and gar embryos revealed that foregut outpocketing at the pre-oral domain begins even before the sequential formation of pharyngeal pouches. The presence of foregut-derived cells in the front of the mouth was further confirmed by in vivo experiments that allowed specific tracing of the early endodermal lining. We show that POGD in sturgeons contribute to the orofacial surface of their larvae, comprising oral teeth, lips, and sensory barbels. To our knowledge, this is the first thorough evidence for endodermal origin of external craniofacial structures in any vertebrate. In bichir and gar embryos, POGD form prominent cranial adhesive organs that are characteristic of the ancient bauplan of free-living chordate larvae. POGD hence seem arguably to be ancestral for all ray-finned fishes, and their topology, pharyngeal-like morphogenesis and gene expression suggest that they are evolutionarily related to the foregut-derived diverticula of early chordate and hemichordate embryos. The formation of POGD might thus represent an ancestral developmental module with deep deuterostome origins.
Department of Theoretical Biology University of Vienna Vienna Austria
Department of Zoology Charles University Prague Czech Republic
Department of Zoology Comenius University Bratislava Slovakia
Department of Zoology National Museum Prague Czech Republic
Universidad Juárez Autónoma de Tabasco División Académica de Ciencias Biológicas Villahermosa Mexico
Zobrazit více v PubMed
Semin Cell Dev Biol. 2010 May;21(3):325-32 PubMed
PLoS Biol. 2004 Sep;2(9):E244 PubMed
Curr Opin Genet Dev. 2015 Jun;32:66-72 PubMed
Zoolog Sci. 2016 Jun;33(3):272-81 PubMed
Development. 2002 Feb;129(4):1061-73 PubMed
Dev Biol. 2006 Jul 15;295(2):700-13 PubMed
J Anat. 1993 Aug;183 ( Pt 1):75-89 PubMed
Genesis. 2014 Dec;52(12):925-34 PubMed
Curr Biol. 1999 Oct 21;9(20):1147-57 PubMed
Nature. 2013 Jan 10;493(7431):175-80 PubMed
Commun Integr Biol. 2011 Jan;4(1):75-7 PubMed
Evol Dev. 2012 May-Jun;14(3):234-56 PubMed
Evodevo. 2012 Oct 01;3(1):24 PubMed
BMC Dev Biol. 2001;1:6 PubMed
Dev Biol. 2009 Jan 1;325(1):282-95 PubMed
Biol Open. 2014 Oct 31;3(11):1098-107 PubMed
Nature. 2008 Oct 9;455(7214):795-8 PubMed
Dev Growth Differ. 2012 Aug;54(6):649-59 PubMed
Dev Biol. 2000 Sep 15;225(2):339-56 PubMed
J Exp Zool B Mol Dev Evol. 2007 Sep 15;308(5):591-608 PubMed
Proc Biol Sci. 2012 Jan 22;279(1727):237-46 PubMed
J Anat. 2014 Nov;225(5):479-91 PubMed
Nature. 2015 Apr 23;520(7548):456-65 PubMed
J Anat. 2013 Jan;222(1):79-99 PubMed
Evol Dev. 2002 Jan-Feb;4(1):9-15 PubMed
Development. 2004 Feb;131(3):593-9 PubMed
Evol Dev. 2001 Mar-Apr;3(2):109-19 PubMed
Dev Biol. 2009 Aug 1;332(1):90-102 PubMed
BMC Physiol. 2009 Jun 22;9:11 PubMed
Periderm fate and independence of tooth formation are conserved across osteichthyans
Sturgeon gut development: a unique yolk utilization strategy among vertebrates
Pre-mandibular pharyngeal pouches in early non-teleost fish embryos
Plasticity of Dental Cell Types in Development, Regeneration, and Evolution
Evolution of the nitric oxide synthase family in vertebrates and novel insights in gill development
The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits
Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes
Lineage analysis reveals an endodermal contribution to the vertebrate pituitary
Bichir external gills arise via heterochronic shift that accelerates hyoid arch development