The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits

. 2022 Feb ; 97 (1) : 414-447. [epub] 20211013

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34647411

There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.

Zobrazit více v PubMed

Adams, A. E. (1924). An experimental study of the development of the mouth in the amphibian embryo. Journal of Experimental Zoology 40, 311–379.

Adams, A. E. (1931). Some effects of removal of endoderm from the mouth region of early Amblystoma punctatum embryos. Journal of Experimental Zoology 58, 147–163.

Adams, A. , Mankad, K. , Offiah, C. & Childs, L. (2016). Branchial cleft anomalies: A pictorial review of embryological development and spectrum of imaging findings. Insights Into Imaging 7, 69–76. PubMed PMC

Aigler, S. R. , Jandzik, D. , Hatta, K. , Uesugi, K. & Stock, D. W. (2014). Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes. Proceedings of the National Academy of Sciences of the United States of America 111, 7707–7712. PubMed PMC

Aman, A. J. , Fulbright, A. N. & Parichy, D. M. (2018). Wnt/β‐catenin regulates an ancient signaling network during zebrafish scale development. eLife 7, e37001. PubMed PMC

Arambourg, C. & Bertin, L. (1958). Super‐Ordres des Holostéens et des Halécostomes (Holostei et Halecostomi). In Traité de Zoologie (ed. Grassé P.‐P.. Vol. 13 (3). Agnathes et Poissons. Anatomie, Ethologie, Systématique), pp. 2173–2203. Masson et Cie, Paris.

Atkinson, C. J. L. & Collin, S. P. (2012). Structure and topographic distribution of oral denticles in elasmobranch fishes. Biological Bulletin 222, 26–34. PubMed

Atukorala, A. D. S. , Inohaya, K. , Baba, O. , Tabata, M. J. , Ratnayake, R. A. R. K. , Abduweli, D. , Kasugai, S. , Mitani, H. & Takano, Y. (2011). Scale and tooth phenotypes in medaka with a mutated ectodysplasin‐A receptor: implications for the evolutionary origin of oral and pharyngeal teeth. Archives of Histology and Cytology 73, 139–148. PubMed

Balfour, F. M. & Parker, W. N. (1882). On the structure and development of Lepidosteus . Philosophical Transactions of the Royal Society of London 173, 359–442.

Balic, A. (2019). Concise review: cellular and molecular mechanisms regulation of tooth initiation. Stem Cells 37, 26–32. PubMed

Balic, A. & Thesleff, I. (2015). Tissue interactions regulating tooth development and renewal. Current Topics in Developmental Biology 115, 157–186. PubMed

Balinsky, B. I. (1975). An Introduction to Embryology, 4th Edition. W.B. Saunders Company, Philadelphia, 648 pp.

Barlow, L. A. & Northcutt, R. G. (1995). Embryonic origin of amphibian taste buds. Developmental Biology 169, 273–285. PubMed

Bartsch, P. , Gemballa, S. & Piotrowski, T. (1997). The embryonic and larval development of Polypterus senegalus Cuvier, 1829: its staging with reference to external and skeletal features, behavior and locomotory habits. Acta Zoologica (Stockholm) 78, 309–328.

Berkovitz, B. K. B. & Shellis, R. P. (2016). The Teeth of Non‐Mammalian Vertebrates. Elsevier, Amsterdam, 354 pp.

Bertin, L. (1958). Organes de la respiration aquatique. In Traité de Zoologie (ed. Grassé P.‐P.. Vol. 13 (2). Agnathes et Poissons. Anatomie, Ethologie, Systématique), pp. 1303–1341. Masson et Cie, Paris.

Birkholz, D. A. , Olesnicky Killian, E. C. , George, K. M. & Artinger, K. B. (2009). prdm1a is necessary for posterior pharyngeal arch development in zebrafish. Developmental Dynamics 238, 2575–2587. PubMed PMC

Bjerring, H. C. (1977). A contribution to structural analysis of the head of craniate animals. Zoologica Scripta 6, 127–183.

Bjerring, H. C. (1998). The fates of spiracular allostoses in mammals. Acta Zoologica (Stockholm) 79, 51–67.

Blais, S. A. , MacKenzie, L. A. & Wilson, M. V. H. (2011). Tooth‐like scales in early Devonian eugnathostomes and the ‘outside‐in’ hypothesis for the origins of teeth in vertebrates. Journal of Vertebrate Paleontology 31, 1189–1199.

Bloomquist, R. F. , Parnell, N. F. , Phillips, K. A. , Fowler, T. E. , Yu, T. Y. , Sharpe, P. T. & Streelman, J. T. (2015). Coevolutionary patterning of teeth and taste buds. Proceedings of the National Academy of Sciences of the United States of America 112, E5954–E5962. PubMed PMC

Boy, J. A. (1988). On some representatives of the Eryopoidea (Amphibia: Temnospondyli) from the European Rotliegend (?uppermost Carboniferous – Permian) 1. Sclerocephalus. Paläontologische Zeitschrift 62, 107–132 [in German].

Brachet, A. (1935). Traité d'Embryologie des Vertébrés. 690 pp. Masson et Cie , Paris.

Brazeau, M. & Ahlberg, P. (2005). A new look at tetrapod middle ear origins: spiracle evolution in the Tetrapodomorpha. Journal of Vertebrate Paleontology 25, 39A.

Brazeau, M. & Ahlberg, P. (2006). Tetrapod‐like middle ear architecture in a Devonian fish. Nature 439, 318–321. PubMed

Brazeau, M. D. , Friedman, M. , Jerve, A. & Atwood, R. C. (2017). A three‐dimensional placoderm (stem‐group gnathostome) pharyngeal skeleton and its implications for primitive gnathostome pharyngeal architecture. Journal of Morphology 278, 1220–1228. PubMed PMC

Bruneel, B. , Mathä, M. , Paesen, R. , Ameloot, M. , Weninger, W. J. & Huysseune, A. (2015). Imaging the zebrafish dentition: from traditional approaches to emerging technologies. Zebrafish 12, 1–10. PubMed PMC

Buchtová, M. , Handrigan, G. , Tucker, A. , Lozanoff, S. , Town, L. , Fu, K. , Diewert, V. , Wicking, C. & Richman, J. (2008). Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling. Developmental Biology 319, 132–145. PubMed

Calamari, Z. T. , Kuang‐Hsien Hu, J. & Klein, O. D. (2018). Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. BioEssays 40(1800140), 1–11. PubMed PMC

Cassin, C. & Capuron, A. (1979). Buccal organogenesis in Pleurodeles waltlii Michah (urodele amphibian). Study by intrablastocelic transplantation and in vitro culture. Journal de Biologie Buccale 7, 61–76. PubMed

Chai, Y. , Jiang, X. , Ito, Y. , Bringas, P. , Han, J. , Rowitch, D. H. , Soriano, P. , McMahon, A. P. & Sucov, H. M. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679. PubMed

Chen, C.‐F. , Chu, C.‐Y. , Chen, T.‐H. , Lee, S.‐J. , Shen, C.‐N. & Hsiao, C.‐D. (2011). Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo. PLoS One 6, e20654. PubMed PMC

Chen, D. , Blom, H. , Sanchez, S. , Tafforeau, P. , Märss, T. & Ahlberg, P. E. (2020). The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus . eLife 9, e60985. PubMed PMC

Chen, J. , Jacox, L. A. , Saldanha, F. & Sive, H. (2017). Mouth development. Wiley Interdisciplinary Reviews‐Developmental Biology 6, e275. PubMed PMC

Chibon, P. (1966). Analyse expérimentale de la régionalisation et des capacités morphogénétiques de la crête neurale chez l'Amphibien Urodèle Pleurodeles waltlii Michah. Mémoires de la Société Zoologique de France 36, 5–108.

Chibon, P. (1967). Étude expérimentale par ablations, greffes, et autoradiographie de l'origine des dents chez l'Amphibien Urodèle Pleurodeles waltlii Michah. Archives of Oral Biology 12, 745–753. PubMed

Chibon, P. (1970). L'origine de l'organe adamantin des dents. Etude au moyen du marquage nucléaire de l'ectoderme stomodéal. Annales d'Embryologie et de Morphogenèse 3, 203–213.

Choe, C. P. , Collazo, A. , Trinh, L. A. , Pan, L. , Moens, C. B. & Crump, J. G. (2013). Wnt‐dependent epithelial transitions drive pharyngeal pouch formation. Developmental Cell 24, 296–309. PubMed PMC

Choe, C. P. & Crump, J. G. (2015). Dynamic epithelia of the developing vertebrate face. Current Opinion in Genetics & Development 32, 66–72. PubMed PMC

Clack, J. A. (2002). The dermal skull roof of Acanthostega gunnari, an early tetrapod from the Late Devonian. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 93, 17–33.

Clemen, G. , Bartsch, P. & Wacker, K. (1998). Dentition and dentigerous bones in juveniles and adults of Polypterus senegalus (Cladistia, Actinopterygii). Annals of Anatomy 180, 211–221. PubMed

Coates, M. I. & Clack, J. A. (1991). Fish‐like gills and breathing in the earliest known tetrapod. Nature 352, 234–236.

Collazo, A. , Bolker, J. A. & Keller, R. (1994). A phylogenetic perspective on teleost gastrulation. American Naturalist 144, 133–152.

Comabella, Y. , Franyutti, A. H. , Hurtado, A. , Canabal, J. & García‐Galano, T. (2012). Ontogenetic development of the digestive tract in Cuban gar (Atractosteus tristoechus) larvae. Reviews in Fish Biology and Fisheries 23, 245–260.

Cook, M. H. & Neal, H. V. (1921). Are the taste‐buds of elasmobranchs endodermal in origin? Journal of Comparative Neurology 33, 45–63.

Cordier, A. C. & Haumont, S. M. (1980). Development of thymus, parathyroids, and ultimo‐branchial bodies in NMRI and nude mice. American Journal of Anatomy 157, 227–263. PubMed

Davit‐Béal, T. , Allizard, F. & Sire, J.‐Y. (2006). Morphological variations in a tooth family through ontogeny in Pleurodeles waltl (Lissamphibia, Caudata). Journal of Morphology 267, 1048–1065. PubMed

Davit‐Béal, T. , Chisaka, H. , Delgado, S. & Sire, J.‐Y. (2007). Amphibian teeth: current knowledge, unanswered questions, and some directions for future research. Biological Reviews 82, 49–81. PubMed

de Beer, G. R. (1947). The differentiation of neural crest cells into visceral cartilages and odontoblasts in Amblystoma, and a re‐examination of the germ‐layer theory. Proceedings of the Royal Society of London, Series B 134, 377–398. PubMed

Debiais‐Thibaud, M. , Borday‐Birraux, V. , Germon, I. , Bourrat, F. , Metcalfe, C. J. , Casane, D. & Laurenti, P. (2007). Development of oral and pharyngeal teeth in the medaka (Oryzias latipes): comparison of morphology and expression of eve1 gene. Journal of Experimental Zoology (Molecular and Developmental Evolution) 308B, 693–708. PubMed

Debiais‐Thibaud, M. , Germon, I. , Laurenti, P. , Casane, D. & Borday‐Birraux, V. (2008). Low divergence in Dlx gene expression between dentitions of the medaka (Oryzias latipes) versus high level of expression shuffling in osteichtyans. Evolution & Development 10, 464–476. PubMed

Debiais‐Thibaud, M. , Oulion, S. , Bourrat, F. , Laurenti, P. , Casane, D. & Borday‐Birraux, V. (2011). The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula . BMC Evolutionary Biology 11, 307. PubMed PMC

Degener, L. M. (1924). The development of the dentary bone and teeth of Amia calva . Journal of Morphology 39, 113–155.

Delgado, S. , Davit‐Béal, T. , Allizard, F. & Sire, J.‐Y. (2005). Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation. Cell Tissue Research 319, 71–89. PubMed

Dettlaff, T. A. (1993). Evolution of the histological and functional structure of ectoderm, chordamesoderm and their derivatives in Anamnia. Roux's Archives in Developmental Biology 203, 3–9. PubMed

Didier, D. A. , Stahl, B. J. & Zangerl, R. (1994). Development and growth of compound tooth plates in Callorhinchus milii (Chondrichthyes, HoIocephaIi). Journal of Morphology 222, 73–89. PubMed

Doeland, M. , Couzens, A. M. C. , Donoghue, P. C. J. & Rücklin, M. (2019). Tooth replacement in early sarcopterygians. Royal Society Open Science 6, 191173. PubMed PMC

Donoghue, P. C. J. & Rücklin, M. (2016). The ins and outs of the evolutionary origin of teeth. Evolution & Development 18, 19–30. PubMed

Donoghue, P. C. J. & Sansom, I. J. (2002). Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique 59, 352–372. PubMed

Donoghue, P. C. J. , Sansom, I. J. & Downs, J. P. (2006). Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Journal of Experimental Zoology (Molecular and Developmental Evolution) 306B, 278–294. PubMed

Duellman, W. E. & Trueb, L. (1986). Biology of the Amphibians. McGraw‐Hill Book Company, New York, 670 pp.

Duncan, K. M. , Mukherjee, K. , Cornell, R. A. & Liao, E. C. (2017). Zebrafish models of orofacial clefts. Developmental Dynamics 246, 897–914. PubMed PMC

Edwards, L. F. (1929). The origin of the pharyngeal teeth of the carp (Cyprinus carpio Linnaeus). Ohio Journal of Sciences 29, 93–130.

Eisenhoffer, G. T. , Slattum, G. , Ruiz, O. E. , Otsuna, H. , Bryan, C. D. , Lopez, J. , Wagner, D. S. , Bonkowsky, J. L. , Chien, C.‐B. , Dorsky, R. I. & Rosenblatt, J. (2017). A toolbox to study epidermal cell types in zebrafish. Journal of Cell Science 130, 269–277. PubMed PMC

El Shahawy, M. , Reibring, C.‐G. , Neben, C. L. , Hallberg, K. , Marangoni, P. , Harfe, B. D. , Klein, O. D. , Linde, A. & Gritli‐Linde, A. (2017). Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid. PLoS Genetics 13, e1006914. PubMed PMC

Fischer, B. , Metzger, M. , Richardson, R. , Knyphausen, P. , Ramezani, T. , Franzen, R. , Schmelzer, E. , Bloch, W. , Carney, T. J. & Hammerschmidt, M. (2014). p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genetics 10, e1004048. PubMed PMC

Ford, G. , Balakrishnan, A. , Evans, J. & Bailey, C. (1992). Branchial cleft and pouch anomalies. The Journal of Laryngology and Otology 106, 137–143. PubMed

Françillon‐Vieillot, H. , Trébaol, L. , Meunier, F. J. & Slembrouck, J. (1994). Histological study of odontogenesis in the pharyngeal jaws of Trachinotus teraia (Cuvier et Valenciennes, 1832) (Osteichthyes, Teleostei, Carangidae). Journal of Morphology 220, 11–24. PubMed

Fraser, G. J. , Bloomquist, R. F. & Streelman, J. T. (2008). A periodic pattern generator for dental diversity. BMC Biology 6, 32. PubMed PMC

Fraser, G. J. , Cerny, R. , Soukup, V. , Bronner‐Fraser, M. & Streelman, J. T. (2010). The odontode explosion: the origin of tooth‐like structures in vertebrates. BioEssays 32, 808–817. PubMed PMC

Fraser, G. J. , Hulsey, C. D. , Bloomquist, R. F. , Uyesugi, K. , Manley, N. R. & Streelman, J. T. (2009). An ancient gene network is co‐opted for teeth on old and new jaws. PLoS Biology 7, e1000031. PubMed PMC

Fraser, G. J. & Smith, M. M. (2011). Evolution of developmental pattern for vertebrate dentitions: an oro‐pharyngeal specific mechanism. Journal of Experimental Zoology (Molecular and Developmental Evolution) 316, 99–112. PubMed

Frisdal, A. & Trainor, P. A. (2014). Development and evolution of the pharyngeal apparatus. Wiley Interdisciplinary Reviews‐Developmental Biology 3, 403–418. PubMed PMC

Fukazawa, C. , Santiago, C. , Park, K. M. , Deery, W. J. , de la Torre Canny, S. G. , Holterhoff, C. K. & Wagner, D. S. (2010). Poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Developmental Biology 346, 272–283. PubMed PMC

Gardiner, B. C. & Schaeffer, B. (1989). Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society 97, 135–187.

Gibert, Y. , Bernard, L. , Debiais‐Thibaud, M. , Bourrat, F. , Joly, J.‐S. , Pottin, K. , Meyer, A. , Retaux, S. , Stock, D. W. , Jackman, W. R. , Seritrakul, P. , Begemann, G. & Laudet, V. (2010). Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. FASEB Journal 24, 3298–3309. PubMed PMC

Gibert, Y. , Samarut, E. , Pasco‐Viel, E. , Bernard, L. , Borday‐Birraux, V. , Sadier, A. , Labbé, C. , Viriot, L. & Laudet, V. (2015). Altered retinoic acid signalling underpins dentition evolution. Proceedings of the Royal Society B 282, 20142764. PubMed PMC

Gilchrist, J. D. F. (1922). XXVII.—Note on the oesophageal teeth of the Stromateidæ. Annals and Magazine of Natural History 9(51), 249–255.

Gisbert, E. , Rodriguez, A. , Castelló‐Orvay, F. & Williot, P. (1998). A histological study of the development of the digestive tract of Siberian sturgeon (Acipenser baeri) during early ontogeny. Aquaculture 167, 195–209.

Goette, A. (1901). Uber die Kiemen der Fische. Zeitschrift für Wissenschaftliche Zoologie 69, 533–577.

Gonzalez, M. E. , Blanquez, M. J. & Rojo, C. (1996). Early gill development in the rainbow trout, Oncorhynchus mykiss . Journal of Morphology 229, 201–217. PubMed

Goodrich, E. S. (1930). Studies on the Structure & Development of Vertebrates. MacMillan and Co, Limited, London, 837 pp.

Graham, A. (2008). Deconstructing the pharyngeal metamere. Journal of Experimental Zoology (Molecular and Developmental Evolution) 310B, 336–344. PubMed

Graham, A. , Okabe, M. & Quinlan, R. (2005). The role of the endoderm in the development and evolution of the pharyngeal arches. Journal of Anatomy 207, 479–487. PubMed PMC

Graham, A. , Poopalasundaram, S. , Shone, V. & Kiecker, C. (2019). A reappraisal and revision of the numbering of the pharyngeal arches. Journal of Anatomy 235, 1019–1023. PubMed PMC

Graham, A. & Richardson, J. (2012). Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo 3, 24. PubMed PMC

Graham, A. & Shone, V. (2019). Pharyngeal remodelling in vertebrate evolution. In Evolution and Development of Fishes (eds Johanson Z., Underwood C. and Richter M.), pp. 241–251. Cambridge University Press, New York.

Graveson, A. C. , Smith, M. M. & Hall, B. K. (1997). Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance. Developmental Biology 188, 34–42. PubMed

Grevellec, A. & Tucker, A. S. (2010). The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Seminars in Cell and Developmental Biology 21, 325–332. PubMed

Haas, A. (2003). Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19, 23–89. PubMed

Hall, B. K. (1998). Germ layers and the germ‐layer theory revisited. Evolutionary Biology 30, 121–186.

Hall, B. K. (2000). The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evolution & Development 2, 3–5. PubMed

Hall, B. K. & Gillis, J. A. (2013). Incremental evolution of the neural crest, neural crest cells and neural crest‐derived skeletal tissues. Journal of Anatomy 222, 19–31. PubMed PMC

Hall, C. , Flores, M. V. , Murison, G. , Crosier, K. & Crosier, P. (2006). An essential role for zebrafish Fgfrl1 during gill cartilage development. Mechanisms of Development 123, 925–940. PubMed

Hanaoka, R. , Ohmori, Y. , Uyemura, K. , Hosoya, T. , Hotta, Y. , Shirao, T. & Okamoto, H. (2004). Zebrafish gcmb is required for pharyngeal cartilage formation. Mechanisms of Development 121, 1235–1247. PubMed

Hanken, J. & Wake, D. B. (1993). Miniaturization of body size: organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics 24, 501–519.

Hardcastle, Z. , Mo, R. , Hui, C.‐C. & Sharpe, P. T. (1998). The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 125, 2803–2811. PubMed

Haridy, Y. , Gee, B. M. , Witzmann, F. , Bevitt, J. J. & Reisz, R. R. (2019). Retention of fish‐like odontode overgrowth in Permian tetrapod dentition supports outside‐in theory of tooth origins. Biology Letters 15, 20190514. PubMed PMC

Harris, M. P. , Hasso, S. M. , Ferguson, M. W. J. & Fallon, J. F. (2006). The development of archosaurian first‐generation teeth in a chicken mutant. Current Biology 16, 371–377. PubMed

Harris, M. P. , Rohner, N. , Schwarz, H. , Perathoner, S. , Konstantinidis, P. & Nüsslein‐Volhard, C. (2008). Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates. PLoS Genetics 4, 1–15. PubMed PMC

Harrison, R. G. (1918). Experiments on the development of the forelimb of Amblystoma, a self‐differentiating equipotential system. Journal of Experimental Zoology 25, 413–461.

Hayashi, H. (1972). Opening mechanism of stomodeum cavity and transformation of yolk platelet proteins to various subcellular structures in developing newt embryos, Triturus pyrrhogaster . Journal of Electron Microscopy 21, 246 (abstract).

He, S. , Yue, P. & Chen, Y. (1997). Comparative study on the morphology and development of the pharyngeal dentition in the families of Cypriniformes. Acta Zoologica Sinica 43, 255–262.

Hertwig, O. (1874). Ueber Bau und Entwickelung der Placoidschuppen und der Zähne der Selachier. Jenaische Zeitschrift für Naturwissenschaft 8, 331–404.

Hildebrand, M. (1995). Analysis of Vertebrate Structure, 4th Edition. John Wiley & Sons, New York, 657 pp.

Hilton, E. J. , Grande, L. & Bemis, W. E. (2011). Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur, 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae). Fieldiana Life Earth Sciences 3, 1–168.

Hogan, B. M. , Hunter, M. P. , Oates, A. C. , Crowhurst, M. O. , Hall, N. E. , Heath, J. K. , Prince, V. E. & Lieschke, G. J. (2004). Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Developmental Biology 276, 508–522. PubMed

Holtfreter, J. (1935). Morphologische Beeinflussung von Urodelenektoderm bei xenoplastischer Transplantation. Wilhelm Roux’ Archiv für Entwicklungsmechanik 133, 367–426. PubMed

Holzschuh, J. , Wada, N. , Wada, C. , Schaffer, A. , Javidan, Y. , Talafuss, A. , Bally‐Cuif, L. & Schilling, T. F. (2005). Requirements for endoderm and BMP signalling in sensory neurogenesis in zebrafish. Development 132, 3731–3742. PubMed

Huysseune, A. (1990). Development of the anterior part of the mandible and the mandibular dentition in two species of Cichlidae (Teleostei). Cybium 14, 327–344.

Huysseune, A. & Sire, J.‐Y. (1998). Evolution of patterns and processes in teeth and tooth‐related tissues in non‐mammalian vertebrates. European Journal of Oral Sciences 106(Suppl. 1), 437–481. PubMed

Huysseune, A. , Sire, J.‐Y. & Witten, P. E. (2009). Evolutionary and developmental origins of the vertebrate dentition. Journal of Anatomy 214, 465–476. PubMed PMC

Huysseune, A. , Sire, J.‐Y. & Witten, P. E. (2010). A revised hypothesis on the evolutionary origin of the vertebrate dentition. Journal of Applied Ichthyology 26, 152–155.

Huysseune, A. , Soenens, M. & Elderweirdt, F. (2014). Wnt signaling during tooth replacement in zebrafish (Danio rerio): pitfalls and perspectives. Frontiers in Physiology 5, 386. PubMed PMC

Huysseune, A. & Thesleff, I. (2004). Continuous tooth replacement: the possible involvement of epithelial stem cells. BioEssays 26, 665–671. PubMed

Huysseune, A. , Van der heyden, C. & Sire, J.‐Y. (1998). Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anatomy & Embryology 198, 289–305. PubMed

Imai, H. , Osumi, N. & Eto, K. (1998). Contribution of foregut endoderm to tooth initiation of mandibular incisor in rat embryos. European Journal of Oral Sciences 106(Suppl. 1), 19–23. PubMed

Isokawa, S. , Kubota, K. , Kosakai, T. , Satomura, I. , Tsubouchi, M. & Sera, A. (1965). Some contributions to study of esophageal sacs and teeth of fishes. Journal of the Nihon University School of Dentistry 7, 103–111. PubMed

Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes . Mechanisms of Development 121, 605–618. PubMed

Jackman, W. R. , Davies, S. H. , Lyons, D. B. , Stauder, C. K. , Denton‐Schneider, B. R. , Jowdry, A. , Aigler, S. R. , Vogel, S. A. & Stock, D. W. (2013). Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth. Evolution & Development 15, 107–118. PubMed PMC

Jackman, W. R. , Draper, B. W. & Stock, D. W. (2004). Fgf signaling is required for zebrafish tooth development. Developmental Biology 274, 139–157. PubMed

Jackman, W. R. & Stock, D. W. (2006). Transgenic analysis of Dlx regulation in fish tooth development reveals evolutionary retention of enhancer function despite organ loss. Proceedings of the National Academy of Sciences of the USA 103, 19390–19395. PubMed PMC

Jackman, W. R. , Yoo, J. J. & Stock, D. W. (2010). Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC Developmental Biology 10, 119. PubMed PMC

Janvier, P. (1996). Early Vertebrates. Clarendon Press, Oxford, 393 pp.

Janvier, P. (2015). Facts and fancies about early fossil chordates and vertebrates. Nature 520, 483–489. PubMed

Jheon, A. H. , Seidel, K. , Biehs, B. & Klein, O. D. (2012). From molecules to mastication: the development and evolution of teeth. Wiley Interdisciplinary Reviews‐Developmental Biology 2, 165–182. PubMed PMC

Johanson, Z. & Ahlberg, P. E. (1997). A new tristichopterid (Osteolepiformes: Sarcopterygii) from the Mandagery Sandstone (Late Devonian, Famennian) near Canowindra, NSW, Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences 88, 39–68.

Johanson, Z. & Smith, M. M. (2005). Origin and evolution of gnathostome dentitions: A question of teeth and pharyngeal denticles in placoderms. Biological Reviews 80, 303–345. PubMed

Johnson, C. W. , Hernandez‐Lagunas, L. , Feng, W. , Melvin, V. S. , Williams, T. & Artinger, K. B. (2011). Vgll2a is required for neural crest cell survival during zebrafish craniofacial development. Developmental Biology 357, 269–281. PubMed PMC

Jollie, M. (1968). Some implications of the acceptance of a delamination principle. In: Current Problems of Lower Vertebrate Phylogeny. Proceedings of the fourth Nobel Symposium, Stockholm, 1967 (ed. T. Ørvig). Interscience (Wiley), pp. 89–107. Almqvist and Wiksell, Stockholm, New York.

Kapsimali, M. (2017). Epithelial cell behaviours during neurosensory organ formation. Development 144, 1926–1936. PubMed

Kawasaki, K. , Keating, J. N. , Nakatomi, M. , Welten, M. , Mikami, M. , Sasagawa, I. , Puttick, M. N. , Donoghue, P. C. J. & Ishiyama, M. (2020). Coevolution of enamel, ganoin, enameloid, and their matrix SCPP genes in osteichthyans. iScience 24, 102023. PubMed PMC

Kemp, A. (2002a). Growth and hard tissue remodelling in the dentition of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Journal of Zoology 257, 219–235.

Kemp, A. (2002b). The marginal dentition of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Journal of Zoology 257, 325–331.

Kemp, A. (2003). The ultrastructure of developing tooth plates in the Australian lungfish, Neoceratodus forsteri . Tissue and Cell 35, 401–426. PubMed

Kerr, J. G. (1903). The development of Lepidosiren paradoxa. Part III. Development of the skin and its derivatives. Journal of Cell Science s2–46, 417–459.

Kimmel, C. B. , Ballard, W. W. , Kimmel, S. R. , Ullmann, B. & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253–310. PubMed

Kimmel, C. B. , Warga, R. M. & Schilling, T. F. (1990). Origin and organization of the zebrafish fate map. Development 108, 581–594. PubMed

King, B. , Marone, F. & Rücklin, M. (2021). Tooth development in the Early Devonian sarcopterygian Powichthys and the evolution of the crown osteichthyan dentition. Palaeontology 64, 645–659.

Kobayashi, D. , Jindo, T. , Naruse, K. & Takeda, H. (2006). Development of the endoderm and gut in medaka, Oryzias latipes . Development Growth and Differentiation 48, 283–295. PubMed

Koch, G. , Thesleff, I. & Kreiborg, S. (2017). Tooth development and disturbances in number and shape of teeth. Electronic file available at https://pocketdentistry.com/ Accessed 19.05.2020.

Kochilas, L. K. , Potluri, V. , Gitler, A. , Balasubramanian, K. & Chin, A. J. (2003). Cloning and characterization of zebrafish tbx1 . Gene Expression Patterns 3, 645–651. PubMed

Kollar, E. J. & Baird, G. R. (1969). The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. Journal of Embryology and Experimental Morphology 21, 131–148. PubMed

Kollar, E. J. & Mina, M. (1991). Role of the early epithelium in the patterning of the teeth and Meckel's cartilage. Journal of Craniofacial Genetics and Developmental Biology 11, 223–228. PubMed

Kopinke, D. , Sasine, J. , Swift, J. , Stephens, W. Z. & Piotrowski, T. (2006). Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification. Developmental Dynamics 235, 2695–2709. PubMed

Kunz, Y. W. , Luer, C. A. & Kapoor, B. G. (eds) (2009). Development of Non‐Teleost Fishes. Science Publishers, Enfield; 289 pp.

Kwon, G. S. , Viotti, M. & Hadjantonakis, A. K. (2008). The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Developmental Cell 15, 509–520. PubMed PMC

Laforest, L. , Brown, C. W. , Poleo, G. , Géraudie, J. , Tada, M. , Ekker, M. & Akimenko, M.‐A. (1998). Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development 125, 4175–4184. PubMed

Le Pabic, P. , Stellwag, E. J. & Scemama, J.‐L. (2009). Embryonic development and skeletogenesis of the pharyngeal jaw apparatus in the cichlid Nile Tilapia (Oreochromis niloticus). The Anatomical Record 292, 1780–1800. PubMed

Lee, R. T. H. , Asharani, P. V. & Carney, T. J. (2014). Basal keratinocytes contribute to all strata of the adult zebrafish dermis. PLoS One 9, e84858. PubMed PMC

Lee, R. T. H. , Thiery, J. P. & Carney, T. J. (2013). Dermal fin rays and scales derive from mesoderm, not neural crest. Current Biology 23, R336–R337. PubMed

Lovely, C. B. , Swartz, M. E. , McCarthy, N. , Norrie, J. L. & Eberhart, J. K. (2016). Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 143, 2000–2011. PubMed PMC

Maisey, J. G. (1988). Phylogeny of early skeletal induction and ossification patterns. Evolutionary Biology 22, 1–36.

Maisey, J. G. (2000). Discovering Fossil Fishes. Westview Press, Boulder, 223 pp.

Maisey, J. G. (2004). Morphology of the braincase in the broadnose sevengill shark Notorynchus (Elasmobranchii, Hexanchiformes), based on CT scanning. American Museum Novitates 3429, 1–52.

Maisey, J. G. , Turner, S. , Naylor, G. J. P. & Miller, R. F. (2014). Dental patterning in the earliest sharks: implications for tooth evolution. Journal of Morphology 275, 586–596. PubMed

McCollum, M. & Sharpe, P. T. (2001). Evolution and development of teeth. Journal of Anatomy 199, 153–159. PubMed PMC

Millot, J. & Anthony, J. (1958). Anatomie de Latimeria chalumnae. Tome I. Squelette, muscles et formations de soutien, pp. 1–122. Editions du Centre National de la Recherche Scientifique, Paris.

Minarik, M. , Stundl, J. , Fabian, P. , Jandzik, D. , Metscher, B. D. , Psenicka, M. , Gela, D. , Osorio‐Pérez, A. , Arias‐Rodriguez, L. , Horácek, I. & Cerny, R. (2017). Pre‐oral gut contributes to facial structures in non‐teleost fishes. Nature 547, 209–214. PubMed

Mitsiadis, T. A. , Caton, J. & Cobourne, M. (2006). Waking‐up the sleeping beauty: recovery of the ancestral bird odontogenic program. Journal of Experimental Zoology (Molecular and Developmental Evolution) 306B, 227–233. PubMed

Mongera, A. & Nüsslein‐Volhard, C. (2013). Scales of fish arise from mesoderm. Current Biology 23(9), R338–R339. PubMed

Moroff, T. (1904). Über die Entwicklung der Kiemen bei Fischen. Archiv für Mikroskopische Anatomie und Entwicklungsgeschichte 64, 189–213.

Murdock, D. J. E. , Dong, X.‐P. , Repetski, J. E. , Marone, F. , Stampanoni, M. & Donoghue, P. C. J. (2013). The origin of conodonts and of vertebrate mineralized skeletons. Nature 502, 546–549. PubMed

Nelson, G. J. (1967). Gill arches of teleostean fishes of the family Clupeidae. Copeia 1967, 389–399.

Nelson, G. J. (1969). Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bulletin of the American Museum of Natural History 141, 475–552.

Nelson, G. J. (1970). Pharyngeal denticles (placoid scales) of sharks, with notes on the dermal skeleton of vertebrates. American Museum Novitates 2415, 1–26.

Nolte, C. , De Kumar, B. & Krumlauf, R. (2019). Hox genes: downstream “effectors” of retinoic acid signaling in vertebrate embryogenesis. genesis 57, e23306. PubMed

Ober, E. A. , Field, H. A. & Stainier, D. Y. R. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mechanisms of Development 120, 5–18. PubMed

Ohazama, A. , Haworth, K. E. , Ota, M. S. , Khonsari, R. H. & Sharpe, P. T. (2010). Ectoderm, endoderm, and the evolution of heterodont dentitions. genesis 48, 382–389. PubMed

Okabe, M. & Graham, A. (2004). The origin of the parathyroid gland. Proceedings of the National Academy of Science of the United States of America 101, 17717–17719. PubMed PMC

Okada, K. , Inohaya, K. , Mise, T. , Kudo, A. , Takada, S. & Wada, H. (2016). Reiterative expression of pax1 directs pharyngeal pouch segmentation in medaka (Oryzias latipes). Development 143, 1800–1810. PubMed

Okada, K. & Takada, S. (2020). The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development 147, dev194738. PubMed

Oralová, V. , Rosa, J. T. , Larionova, D. , Witten, P. E. & Huysseune, A. (2020). Multiple epithelia are required to form teeth deep in the pharynx. Proceedings of the National Academy of Science of the United States of America 117, 11503–11512. PubMed PMC

Ørvig, T. (1967). Phylogeny of tooth tissues: evolution of some calcified tissues in early vertebrates. In Structural and Chemical Organization of Teeth (Volume 1, ed. Miles A. E. W.), pp. 45–110. Academic Press, London.

Ørvig, T. (1977). A survey of odontodes (‘dermal teeth’) from developmental, structural, functional, and phyletic points of view. In Problems in Vertebrate Evolution (eds Andrews S. M., Miles R. S. and Walker A. D.), pp. 53–75. Academic Press, London.

Panousopoulou, E. & Green, J. B. A. (2016). Invagination of ectodermal placodes is driven by cell intercalation‐mediated contraction of the suprabasal tissue canopy. PLoS Biology 14, e1002405. PubMed PMC

Parker, H. W. & Dunn, E. R. (1964). Dentitional metamorphosis in the Amphibia. Copeia 1964, 75–86.

Pasco‐Viel, E. , Charles, C. , Chevret, P. , Semon, M. , Tafforeau, P. , Viriot, L. & Laudet, V. (2010). Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). PLoS One 5, e11293. PubMed PMC

Peters, H. & Balling, R. (1999). Tooth development. Trends in Genetics 15, 59–65. PubMed

Peters, H. , Neubüser, A. , Kratochwil, K. & Balling, R. (1998). Pax9‐deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes & Development 12, 2735–2747. PubMed PMC

Peyer, B. (1968). Comparative Odontology. The University of Chicago, Chicago & London, 347 pp.

Peyrard‐Janvid, M. , Leslie, E. J. , Kousa, Y. A. , Smith, T. L. , Dunnwald, M. , Magnusson, M. , Lentz, B. A. , Unneberg, P. , Fransson, I. , Koillinen, H. K. , Rautio, J. , Pegelow, M. , Karsten, A. , Basel‐Vanagaite, L. , Gordon, W. , Andersen, B. , Svensson, T. , Murray, J. C. , Cornell, R. A. , Kere, J. & Schutte, B. C. (2014). Dominant mutations in GRHL3 cause Van der Woude syndrome and disrupt oral periderm development. American Journal of Human Genetics 94, 23–32. PubMed PMC

Piotrowski, T. , Ahn, D.‐G. , Schilling, T. F. , Nair, S. , Ruvinsky, I. , Geisler, R. , Rauch, G.‐J. , Haffter, P. , Zon, L. I. , Zhou, Y. , Foott, H. , Dawid, I. B. & Ho, R. K. (2003). The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130, 5043–5052. PubMed

Piotrowski, T. & Nüsslein‐Volhard, C. (2000). The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Developmental Biology 225, 339–356. PubMed

Pradel, A. , Maisey, J. G. , Tafforeau, P. , Mapes, R. H. & Mallatt, J. (2014). A Palaeozoic shark with osteichthyan‐like branchial arches. Nature 509, 608–611. PubMed

Prochazka, J. , Prochazkova, M. , Du, W. , Spoutil, F. , Tureckova, J. , Hoch, R. , Shimogori, T. , Sedlacek, R. , Rubenstein, J. L. , Wittmann, T. & Klein, O. D. (2015). Migration of founder epithelial cells drives proper molar tooth positioning and morphogenesis. Developmental Cell 35, 713–724. PubMed PMC

Qu, Q. , Sanchez, S. , Blom, H. , Tafforeau, P. & Ahlberg, P. E. (2013). Scales and tooth whorls of ancient fishes challenge distinction between external and oral ‘teeth’. PLoS One 8, e71890. PubMed PMC

Rankin, S. A. , McCracken, K. W. , Luedeke, D. M. , Han, L. , Wells, J. M. , Shannon, J. M. & Zorn, A. M. (2018). Timing is everything: reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis. Developmental Biology 434, 121–132. PubMed PMC

Rasch, L. J. , Martin, K. J. , Cooper, R. L. , Metscher, B. D. , Underwood, C. J. & Fraser, G. J. (2016). An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Developmental Biology 415, 347–370. PubMed

Raven, C. P. (1935). Zur Entwicklung der Ganglienleiste: IV. Untersuchugen über Zeitpunkt und Verlauf der «materiellen Determination» des präsumptiven Kopfganglienleistenmaterials der Urodelen. Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 132, 509–575. PubMed

Reif, W. E. (1978a). Shark dentitions. Morphogenetic processes and evolution. Neues Jahrbuch für Geologie und Paläontologie‐Abhandlungen 157, 107–115.

Reif, W. E. (1978b). Types of morphogenesis of the dermal skeleton in fossil sharks. Paläontologische Zeitschrift 52, 110–128.

Reif, W. E. (1982). Evolution of dermal skeleton and dentition in vertebrates. The odontode regulation theory. Evolutionary Biology 15, 287–368.

Reif, W. E. (2006). Conodonts, odontodes, stem‐groups, and the ancestry of enamel genes. Neues Jahrbuch für Geologie und Paläontologie‐Abhandlungen 241, 405–439.

Reisinger, E. (1933). Entwicklungsgeschichtliche Untersuchungen am Amphibienvorderdarm. (Gleichzeitig ein Beitrag zur Keimblattspezifität und zur prospektiven Bedeutung des Mesektoderms). Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 129, 445–501. PubMed

Richardson, J. , Shono, T. , Okabe, M. & Graham, A. (2011). The presence of an embryonic opercular flap in amniotes. Proceedings of the Royal Society B 279, 224–229. PubMed PMC

Richardson, R. J. , Hammond, N. L. , Coulombe, P. A. , Saloranta, C. , Nousiainen, H. O. , Salonen, R. , Berry, A. , Hanley, N. , Headon, D. , Karikoski, R. & Dixon, M. J. (2014). Periderm prevents pathological epithelial adhesions during embryogenesis. The Journal of Clinical Investigation 124, 3891–3900. PubMed PMC

Richman, J. M. & Handrigan, G. R. (2011). Reptilian tooth development. genesis 49, 247–260. PubMed

Rizzoti, K. & Lovell‐Badge, R. (2007). SOX3 activity during pharyngeal segmentation is required for craniofacial morphogenesis. Development 134, 3437–3448. PubMed

Romer, A. S. (1949). The Vertebrate Body. W.B. Saunders Company, Philadelphia & London, 643 pp.

Rosa, J. T. , Oralová, V. , Larionova, D. , Eisenhoffer, G. T. , Witten, P. E. & Huysseune, A. (2019). Periderm invasion contributes to epithelial formation in the teleost pharynx. Scientific Reports 9, 10082. PubMed PMC

Rothova, M. , Thompson, H. , Lickert, H. & Tucker, A. S. (2012). Lineage tracing of the endoderm during oral development. Developmental Dynamics 241, 1183–1191. PubMed

Rücklin, M. & Donoghue, P. C. J. (2015). Romundina and the evolutionary origin of teeth. Biology Letters 11, 20150326. PubMed PMC

Rücklin, M. & Donoghue, P. C. J. (2019). Evolutionary Origin of Teeth. Chichester, John Wiley & Sons, Ltd.

Rücklin, M. , Donoghue, P. C. J. , Johanson, Z. , Trinajstic, K. , Marone, F. & Stampanoni, M. (2012). Development of teeth and jaws in the earliest jawed vertebrates. Nature 491, 748–751. PubMed

Rücklin, M. , Giles, S. , Janvier, P. & Donoghue, P. C. J. (2011). Teeth before jaws? Comparative analysis of the structure and development of the external and internal scales in the extinct jawless vertebrate Loganellia scotica . Evolution & Development 13, 523–532. PubMed

Rücklin, M. , King, B. , Cunningham, J. A. , Johanson, Z. , Marone, F. & Donoghue, P. C. J. (2021). Acanthodian dental development and the origin of gnathostome dentitions. Nature Ecology and Evolution 5, 919–926. PubMed

Sasagawa, I. , Ishiyama, M. , Yokosuka, H. , Mikami, M. , Oka, S. , Shimokawa, H. & Uchida, T. (2019). Immunolocalization of enamel matrix protein‐like proteins in the tooth enameloid of spotted gar, Lepisosteus oculatus, an actinopterygian bony fish. Connective Tissue Research 60, 291–303. PubMed

Schoch, R. R. (2001). Can metamorphosis be recognized in Palaeozoic amphibians? Neues Jahrbuch für Geologie und Paläontologie‐Abhandlungen 220, 335–367.

Schoch, R. R. (2002). The evolution of metamorphosis in temnospondyls. Lethaia 35, 309–327.

Schoch, R. R. & Witzmann, F. (2011). Bystrow's paradox – gills, fossils, and the fish‐to‐tetrapod transition. Acta Zoologica (Stockholm) 92, 251–265.

Schwend, T. & Ahlgren, S. C. (2009). Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog‐signaling in craniofacial development. BMC Developmental Biology 9, 59. PubMed PMC

Sehring, I. M. & Weidinger, G. (2019). Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdisciplinary Reviews‐Developmental Biology 2019, e367. PubMed

Sellman, S. (1946). Some experiments on the determination of the larval teeth in Ambystoma mexicanum . Odontologisk Tidskrift 54, 1–128.

Seritrakul, P. , Samarut, E. , Lama, T. T. S. , Gibert, Y. , Laudet, V. & Jackman, W. R. (2012). Retinoic acid expands the evolutionarily reduced dentition of zebrafish. FASEB Journal 26, 5014–5024. PubMed PMC

Shkil, F. N. , Levin, B. A. , Abdissa, B. & Smirnov, S. V. (2010). Variability in the number of tooth rows in the pharyngeal dentition of Barbus intermedius (Teleostei; Cyprinidae): genetic, hormonal and environmental factors. Journal of Applied Ichthyology 26, 315–319.

Shone, V. & Graham, A. (2014). Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates. Journal of Anatomy 225, 479–491. PubMed PMC

Sire, J.‐Y. & Allizard, F. (2001). A fourth teleost lineage possessing extra‐oral teeth: the genus Atherion (Teleostei; Atheriniformes). European Journal of Morphology 39, 295–305. PubMed

Sire, J.‐Y. , Davit‐Béal, T. , Delgado, S. , Van der heyden, C. & Huysseune, A. (2002). First‐generation teeth in nonmammalian lineages: evidence for a conserved ancestral character? Microscopy Research and Technique 59, 408–434. PubMed

Sire, J.‐Y. & Huysseune, A. (2003). Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach. Biological Reviews 78, 219–249. PubMed

Smith, M. M. (2003). Vertebrate dentitions at the origin of jaws: when and how pattern evolved. Evolution & Development 5, 394–413. PubMed

Smith, M. M. & Coates, M. I. (1998). Evolutionary origins of the vertebrate dentition: phylogenetic patterns and developmental evolution. European Journal of Oral Sciences 106(Suppl. 1), 482–500. PubMed

Smith, M. M. & Coates, M. I. (2000). Evolutionary origins of teeth and jaws: developmental models and phylogenetic patterns. In Development, Function and Evolution of Teeth (eds Teaford M., Smith M. and Ferguson M.), pp. 133–151. Cambridge University Press, Cambridge.

Smith, M. M. & Coates, M. I. (2001). The evolution of vertebrate dentitions: phylogenetic pattern and developmental models. In Major Events in Early Vertebrate Evolution (ed. Ahlberg P. E., Systematics Association Special Volume Series 61), pp. 223–240. CRC Press, London.

Smith, M. M. , Fraser, G. J. , Chaplin, N. , Hobbs, C. & Graham, A. (2009). Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proceedings of the Royal Society B‐Biological Sciences 276, 1225–1233. PubMed PMC

Smith, M. M. & Johanson, Z. (2015). Origin of the vertebrate dentition: teeth transform jaws into a biting force. In Great Transformations in Vertebrate Evolution (eds Dial K. P., Shubin N. and Brainerd E. L.), pp. 9–29. The University of Chicago Press, Chicago and London.

Smith, M. M. , Johanson, Z. , Butts, T. , Ericsson, R. , Modrell, M. , Tulenko, F. J. , Davis, M. C. & Fraser, G. J. (2015). Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii). Proceedings of the Royal Society B 282, 20142700. PubMed PMC

Soukup, V. , Epperlein, H. H. , Horacek, I. & Cerny, R. (2008). Dual epithelial origin of vertebrate oral teeth. Nature 455, 795–799. PubMed

Soukup, V. , Horacek, I. & Cerny, R. (2013). Development and evolution of the vertebrate primary mouth. Journal of Anatomy 222, 79–99. PubMed PMC

Soukup, V. , Tazaki, A. , Yamazaki, Y. , Pospisilova, A. , Epperlein, H.‐H. , Tanaka, E. & Cerny, R. (2021). Oral and palatal dentition of axolotl arises from a common tooth‐competent zone along the ecto‐endodermal boundary. Frontiers in Cell and Developmental Biology 8, 622308. PubMed PMC

Stadtmüller, F. (1924). Über Entwicklung und Bau der papillenförmigen Erhebungen (Filterfortsätze) auf den Branchialbogen der Salamandridenlarven. Zeitschrift für Morphologie und Anthropologie 24, 125–156.

Starck, D. (1982). Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Bd 3. Springer Verlag, Berlin, 1110 pp.

Stock, D. W. (2001). The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philosophical Transactions of the Royal Society of London B 356, 1633–1653. PubMed PMC

Stock, D. W. (2007). Zebrafish dentition in comparative context. Journal of Experimental Zoology (Molecular and Developmental Evolution) 308B, 523–549. PubMed

Stock, D. W. , Jackman, W. R. & Trapani, J. (2006). Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development 133, 3127–3137. PubMed

Ströer, W. F. H. (1933). Experimentelle Untersuchungen über die Mundentwicklung bei den Urodelen. Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen 130, 131–186. PubMed

Stundl, J. , Pospisilova, A. , Jandzik, D. , Fabian, P. , Dobiasova, B. , Minarik, M. , Metscher, B. D. , Soukup, V. & Cerny, R. (2019). Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. eLife 8, e435. PubMed PMC

Sucré, E. , Charmantier‐Daures, M. , Grousset, E. , Charmantier, G. & Cucchi‐Mouillot, P. (2009). Early development of the digestive tract (pharynx and gut) in the embryos and pre‐larvae of the European sea bass Dicentrarchus labrax . Journal of Fish Biology 75, 1302–1322. PubMed

Suzuki, T. , Oohara, I. & Kurokawa, T. (1999). Retinoic acid given at late embryonic stage depresses sonic hedgehog and Hoxd‐4 expression in the pharyngeal area and induces skeletal malformation in flounder (Paralichthys olivaceus) embryos. Development Growth & Differentiation 41, 143–152. PubMed

Swartz, M. E. , Sheehan‐Rooney, K. , Dixon, M. J. & Eberhart, J. K. (2011). Examination of a palatogenic gene program in zebrafish. Developmental Dynamics 240, 2204–2220. PubMed PMC

Takahama, H. , Sasaki, F. & Watanabe, K. (1988). Morphological changes in the oral (buccopharyngeal) membrane in urodelan embryos: development of the mouth opening. Journal of Morhology 195, 59–69. PubMed

Taverne, L. (1974). L'ostéologie d'Elops Linné, C., 1766 (Pisces, Elopiformes) et son intérêt phylogénétique. Académie Royale de Belgique . Mémoires de la Classe des Sciences 41, 6–96.

Trapani, J. (2001). Position of developing replacement teeth in teleosts. Copeia 2001, 35–51.

True, J. R. & Carroll, S. B. (2002). Gene co‐option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology 18, 53–80. PubMed

Turner, S. , Burrow, C. J. , Schultze, H. P. , Blieck, A. , Reif, W. E. , Rexroad, C. B. , Bultynck, P. & Nowlan, G. S. (2010). False teeth: conodont‐vertebrate phylogenetic relationships revisited. Geodiversitas 32, 545–594.

Ungar, P. S. (2010). Mammal Teeth: Origin, Evolution, and Diversity. Johns Hopkins University Press, Baltimore, 303 pp.

Vaccari, E. , Deflorian, G. , Bernardi, E. , Pauls, S. , Tiso, N. , Bortolussi, M. & Argenton, F. (2010). prep1.2 and aldh1a2 participate to a positive loop required for branchial arches development in zebrafish. Developmental Biology 343, 94–103. PubMed

Vandenplas, S. , De Clercq, A. & Huysseune, A. (2014). Tooth replacement without a dental lamina: the search for epithelial stem cells in Polypterus senegalus . Journal of Experimental Zoology (Molecular and Developmental Evolution) 322B, 281–293. PubMed

Van der Brugghen, W. & Janvier, P. (1993). Denticles in thelodonts. Nature 364, 107. PubMed

Vandewalle, P. , Huysseune, A. , Aerts, P. & Verraes, W. (1994). The pharyngeal apparatus in teleost feeding. In Advances in Comparative and Environmental: Biomechanics of Feeding in Vertebrates Physiology (Volume 18, eds BELS V., CHARDON M. and VANDEWALLE P.), pp. 59–92. Springer Verlag, Berlin.

Veitch, E. , Begbie, J. , Schilling, T. F. , Smith, M. M. & Graham, A. (1999). Pharyngeal arch patterning in the absence of neural crest. Current Biology 9, 1481–1484. PubMed

Wacker, K. , Bartsch, P. & Clemen, G. (2001). The development of the tooth pattern and dentigerous bones in Polypterus senegalus (Cladistia, Actinopterygii). Annals of Anatomy 183, 37–52. PubMed

Wagner, G. (1955). Chimaerische Zahnanlagen aus Triton‐Schmelzorgan und Bombinator‐Papille. Mit Beobachtungen über die Entwicklung von Kiemenzähnchen und Mundsinnesknospen in den Triton‐Larven. Journal of Embryology and Experimental Morphology 3, 160–188.

Wainwright, P. C. (2006). Functional morphology of the pharyngeal jaw apparatus. Fish Physiology 23, 77–101.

Waldhausen, J. H. T. (2006). Branchial cleft and arch anomalies in children. Seminars in Pediatric Surgery 15, 64–69. PubMed

Wall, N. A. & Hogan, B. L. M. (1995). Expression of bone morphogenetic protein‐4 (BMP‐4), bone morphogenetic protein‐7 (BMP‐7), fibroblast growth factor‐8 (FGF‐8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mechanisms of Development 53, 383–392. PubMed

Wallace, K. N. & Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Developmental Biology 255, 12–29. PubMed

Warga, R. M. & Kane, D. A. (2018). Wilson cell origin for Kupffer's vesicle in the zebrafish. Developmental Dynamics 247, 1057–1069. PubMed

Warth, P. , Hilton, E. J. , Naumann, B. , Olsson, L. & Konstantinidis, P. (2017). Development of the skull and pectoral girdle in Siberian sturgeon, Acipenser baerii, and Russian sturgeon, Acipenser gueldenstaedtii (Acipenseriformes: Acipenseridae). Journal of Morphology 278, 418–442. PubMed

Waterman, R. E. (1977). Ultrastructure of oral (buccopharyngeal) membrane formation and rupture in the hamster embryo. Developmental Biology 58, 219–229. PubMed

Waterman, R. E. & Kao, R. (1982). Formation of the mouth opening in the zebrafish embryo. Scanning Electron Microscopy 1982, 1249–1257.

Waterman, R. E. & Schoenwolf, G. C. (1980). The ultrastructure of oral (buccopharyngeal) membrane formation and rupture in the chick embryo. The Anatomical Record 197, 441–470. PubMed

Wilde, C. E. (1955). The urodele neuroepithelium. I. The differentiation in vitro of the cranial neural crest. Journal of Experimental Zoology 130, 573–591.

Wilkins, A. S. (2002). The Evolution of Developmental Pathways. Sinauer Associates, Inc, Sunderland, 603 pp.

Wise, S. B. & Stock, D. W. (2006). Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes. Evolution & Development 8, 511–523. PubMed

Witten, P. E. , Harris, M. P. , Huysseune, A. & Winkler, C. (2017). Small teleost fish provide new insights into human skeletal diseases. Methods in Cell Biology 138, 321–346. PubMed

Witten, P. E. , Sire, J.‐Y. & Huysseune, A. (2014). Old, new and new‐old concepts about the evolution of teeth. Journal of Applied Ichthyology 30, 636–642.

Wiweger, M. I. , Zhao, Z. , van Merkesteyn, R. J. P. , Roehl, H. H. & Hogendoorn, P. C. W. (2012). HSPG‐deficient zebrafish uncovers dental aspect of multiple osteochondromas. PLoS One 7, e29734. PubMed PMC

Woltmann, I. , Shkil, F. , De Clercq, A. , Huysseune, A. & Witten, P. E. (2018). Supernumerary teeth in the pharyngeal dentition of slow‐developing zebrafish (Danio rerio, Hamilton, 1822). Journal of Applied Ichthyology 34, 455–464.

Worthington, R. D. & Wake, D. B. (1971). Larval morphology and ontogeny of the Ambystomatid salamander, Rhyacotriton olympicus . American Midland Naturalist 85, 349–365.

Yamamoto, M. , Iuchi, I. & Yamagami, K. (1979). Ultrastructural changes of the teleostean hatching gland cell during natural and electrically induced precocious secretion. Developmental Biology 68, 162–174. PubMed

Yu, T. & Klein, O. D. (2020). Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 147, dev184754. PubMed PMC

Yuan, Y. & Chai, Y. (2019). Regulatory mechanisms of jaw bone and tooth development. Current Topics in Developmental Biology 133, 91–118. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Periderm fate and independence of tooth formation are conserved across osteichthyans

. 2024 Oct 03 ; 15 (1) : 13. [epub] 20241003

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...