Oral and Palatal Dentition of Axolotl Arises From a Common Tooth-Competent Zone Along the Ecto-Endodermal Boundary

. 2020 ; 8 () : 622308. [epub] 20210111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33505974

Vertebrate dentitions arise at various places within the oropharyngeal cavity including the jaws, the palate, or the pharynx. These dentitions develop in a highly organized way, where new tooth germs are progressively added adjacent to the initiator center, the first tooth. At the same time, the places where dentitions develop house the contact zones between the outer ectoderm and the inner endoderm, and this colocalization has instigated various suggestions on the roles of germ layers for tooth initiation and development. Here, we study development of the axolotl dentition, which is a complex of five pairs of tooth fields arranged into the typically tetrapod outer and inner dental arcades. By tracking the expression patterns of odontogenic genes, we reason that teeth of both dental arcades originate from common tooth-competent zones, one present on the mouth roof and one on the mouth floor. Progressive compartmentalization of these zones and a simultaneous addition of new tooth germs distinct for each prospective tooth field subsequently control the final shape and composition of the axolotl dentition. Interestingly, by following the fate of the GFP-labeled oral ectoderm, we further show that, in three out of five tooth field pairs, the first tooth develops right at the ecto-endodermal boundary. Our results thus indicate that a single tooth-competent zone gives rise to both dental arcades of a complex tetrapod dentition. Further, we propose that the ecto-endodermal boundary running through this zone should be accounted for as a potential source of instruction factors instigating the onset of the odontogenic program.

Zobrazit více v PubMed

Balic A. M. (2019). Concise review: cellular and molecular mechanisms of regulation of tooth initiation. Stem Cells 37 26–32. 10.1002/stem.2917 PubMed DOI

Barlow L. A. (2000). “Taste buds in ectoderm are induced by endoderm: implications for mechanisms governing taste bud development,” in Regulatory Processes in Development, Wenner-Gren International Series, Vol. 76 eds Ollson, Jacobson C. O. (London: Portland Press; ), 185–190.

Barlow L. A., Northcutt R. G. (1995). Embryonic origin of amphibian taste buds. Dev. Biol. 169 273–285. 10.1006/dbio.1995.1143 PubMed DOI

Barlow L. A., Northcutt R. G. (1997). Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm. Development 124 949–957. PubMed

Bordzilovskaya N. P., Dettlaff T. A., Duhon S. T., Malacinski G. M. (1989). “Developmental-stage series of axolotl embryos,” in Developmental Biology of the Axolotl, ed. Malacinski G. M. (Oxford: Oxford University Press; ), 201–219.

Cardona A., Saalfeld S., Schindelin J., Arganda-Carreras I., Preibisch S., Longair M., et al. (2012). TrakEM software for neural circuit reconstruction. PLoS One 7:e38011. 10.1371/journal.pone.0038011 PubMed DOI PMC

Chen D., Blom H., Sanchez S., Tafforeau P., Märss T., Ahlberg P. E. (2020). The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus. eLife 9:e60985. 10.7554/eLife.60985 PubMed DOI PMC

Clemen G. (1978). Aufbau und Veränderungen der Gaumenzahnleisten beim larvalen und metamorphosierenden Salamandra salamandra (L.) (Salamandridae: Amphibia). Zoomorphology 90 135–150. 10.1007/bf02568680 DOI

Clemen G., Greven H. (1977). Morphologische Untersuchungen an der Mundhöhle von Urodelen III. Die Munddachbezahnung von Ambystoma mexicanum Cope (Ambystomatidae: Amphibia). Zool. Jb Anat. 98 95–136.

Clemen G., Greven H. (1994). The buccal cavity of larval and metamorphosed Salamandra salamandra: structural and developmental aspects. Mertensiella 4 83–109.

Cobourne M. T., Miletich I., Sharpe P. T. (2004). Restriction of sonic hedgehog signalling during early tooth development. Development 131 2875–2885. 10.1242/dev.01163 PubMed DOI

Cooper R. L., Thiery A. P., Fletscher A. G., Delbarre D. J., Rasch L. J., Fraser G. J. (2018). An ancient Turing-like patterning mechanism regulates skin denticle development in sharks. Sci. Adv. 4:eaau5484. 10.1126/sciadv.aau5484 PubMed DOI PMC

Dassule H. R., Lewis P., Bei M., Maas R., McMahon A. P. (2000). Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127 4775–4785. PubMed

Deban S. M., Wake D. B. (2000). Feeding: Form, Function, and Evolution in Tetrapod Vertebrates. London: Academic Press, 82–94.

Debiais-Thibaud M., Chiori R., Enault S., Oulion S., Germont I., Martinand-Mari C., et al. (2015). Tooth and scale morphogenesis in shark: an alternative process to the mammalian enamel knot system. BMC Evol. Biol. 15:292. 10.1186/s12862-015-0557-0 PubMed DOI PMC

Dequéant M. L., Pourquié O. (2008). Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9 370–382. 10.1038/nrg2320 PubMed DOI

Eberhart J. K., Swartz M. E., Crump J. G., Kimmel C. B. (2006). Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development 133 1069–1077. 10.1242/dev.02281 PubMed DOI

Ellis N. A., Donde N. N., Miller C. T. (2016). Early development and replacement of the stickleback dentition. J. Morphol. 277 1072–1083. 10.1002/jmor.20557 PubMed DOI PMC

Fraser G. J., Bloomquist R. F., Streelman J. T. (2008). A periodic pattern generator for dental diversity. BMC Biol. 6:32. 10.1186/1741-7007-6-32 PubMed DOI PMC

Fraser G. J., Cerny R., Soukup V., Bronner-Fraser M., Streelman J. T. (2010). The odontode explosion: the origin of tooth-like structures in vertebrates. BioEssays 32 808–817. 10.1002/bies.200900151 PubMed DOI PMC

Fraser G. J., Graham A., Smith M. M. (2004). Conserved deployment of genes during odontogenesis across osteichthyans. Proc. R Soc. Lond. B 271 2311–2317. 10.1098/rspb.2004.2878 PubMed DOI PMC

Gibert Y., Samarut E., Ellis M. K., Jackman W. R., Laudet V. (2019). The first formed tooth serves as a signalling centre to induce the formation of the dental row in zebrafish. Proc. R Soc. B 286:20190401. 10.1098/rspb.2019.0401 PubMed DOI PMC

Graham A. (2008). Deconstructing the pharyngeal metamere. J. Exp. Zool. B Mol. Dev. Evol. 310 336–344. 10.1002/jez.b.21182 PubMed DOI

Graveson A. C., Smith M. M., Hall B. K. (1997). Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance. Dev. Biol. 188 34–42. 10.1006/dbio.1997.8563 PubMed DOI

Helms J. A., Kim C. H., Hu D., Minkoff R., Thaller C., Eichele G. (1997). Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev. Biol. 187 25–35. 10.1006/dbio.1997.8589 PubMed DOI

Huysseune A., Sire J. Y., Witten P. E. (2009). Evolutionary and developmental origins of the vertebrate dentition. J. Anat. 214 465–476. 10.1111/j.1469-7580.2009.01053.x PubMed DOI PMC

Huysseune A., Sire J. Y., Witten P. E. (2010). A revised hypothesis on the evolutionary origin of the vertebrate dentition. J Appl. Ichthyol. 26 152–155. 10.1111/j.1439-0426.2010.01395.x DOI

Huysseune A., Witten P. E. (2006). Developmental mechanisms underlying tooth patterning in continuously replacing osteichthyan dentitions. J. Exp. Zool. B Mol. Dev. Evol. 306 204–215. 10.1002/jez.b.21091 PubMed DOI

Jackman W. R., Yoo J. J., Stock D. W. (2010). Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC Dev. Biol. 10:119. 10.1186/1471-213X-10-119 PubMed DOI PMC

Jernvall J., Thesleff I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92 19–29. 10.1016/s0925-4773(99)00322-6 PubMed DOI

Jung H. S., Francis-West P. H., Widelitz R. B., Jiang T. X., Ting-Berreth S., Tickle C., et al. (1998). Local inhibitory action of BMPs and their relationships with activators in feather formation: implication for periodic patterning. Dev. Biol. 196 11–23. 10.1006/dbio.1998.8850 PubMed DOI

Keränen S. V. E., Kettunen P., Aberg T., Thesleff I., Jernvall J. (1999). Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev. Genes Evol. 209 495–506. 10.1007/s004270050282 PubMed DOI

Lin C. R., Kioussi C., O’Connel S., Briata P., Szeto D., Liu F., et al. (1999). Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401 279–282. 10.1038/45803 PubMed DOI

Martin K. J., Rasch L. J., Cooper R. L., Metscher B. D., Johanson Z., Fraser G. J. (2016). Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles. Proc. Natl. Acad. Sci. U.S.A. 113 14769–14774. 10.1073/pnas.1612354113 PubMed DOI PMC

Matsumoto R., Evans S. E. (2017). The palatal dentition of tetrapods and its functional significance. J. Anat. 230 47–65. 10.1111/joa.12534 PubMed DOI PMC

Northcutt R. G., Barlow L. A., Braun C. B., Catania K. C. (2000). Distribution and innervation of taste buds in the axolotl. Brain Behav. Evol. 56 123–145. 10.1159/000047200 PubMed DOI

Ohazama A., Haworth K. E., Ota M. S., Khonsari R. H., Sharpe P. T. (2010). Ectoderm, endoderm, and the evolution of heterodont dentitions. Genesis 48 382–389. 10.1002/dvg.20634 PubMed DOI

Oralová V., Rosa J. T., Soenes M., Bek J. W., Willaert A., Witten P. E., et al. (2020). Multiple epithelia are required to develop teeth deep inside the pharynx. Proc. Natl. Acad. Sci. U.S.A. 117 11503–11512. 10.1073/pnas.2000279117 PubMed DOI PMC

Osborn J. W. (1978). “Morphogenetic gradients: field versus clones,” in Development, Function and Evolution of Teeth, eds Butler P. M., Joysey K. A. (London: Academic Press; ), 171–201.

Pospisilova A., Brejcha J., Miller V., Holcman R., Šanda R., Stundl J. (2019). Embryonic and larval development of the northern pike: an emerging fish model system for evo-devo research. J. Morph. 280 1118–1140. PubMed

Prochazka J., Pantalacci S., Churava S., Rothova M., Lambert A., Lesot H., et al. (2010). Patterning by heritage in mouse molar row development. Proc. Natl. Acad. Sci. U.S.A. 107 15497–15502. 10.1073/pnas.1002784107 PubMed DOI PMC

Rasch L. J., Cooper R. L., Underwood C., Dillard W. A., Thiery A. P., Fraser G. J. (2020). Development and regeneration of the crushing dentition in skates (Rajidae). Dev. Biol. 466 59–72. 10.1016/j.ydbio.2020.07.014 PubMed DOI

Rasch L. J., Martin K., Cooper R. L., Metscher B. D., Underwood C. J., Fraser G. J. (2016). An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev. Biol. 415 347–370. 10.1016/j.ydbio.2016.01.038 PubMed DOI

Rothova M., Thompson H., Lickert H., Tusker A. S. (2012). Lineage tracing of the endoderm during oral development. Dev. Dyn. 241 1183–1191. 10.1002/dvdy.23804 PubMed DOI

Sadier A., Jaclman W. R., Laudet V., Gibert Y. (2020). The vertebrate tooth row: is it initiated by a single organizing tooth? BioEssays 2020:1900229 10.1002/bies.201900229 PubMed DOI

Sadier A., Twarogowska M., Steklikova K., Hayden L., Lambert A., Schneder P., et al. (2019). Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning. PLoS Biol. 17:e3000064. 10.1371/journal.pbio.3000064 PubMed DOI PMC

Salomies L., Eymann J., Khan I., Di-Poï N. (2019). The alternative regenerative strategy of bearded dragon unveils the key processes underlying vertebrate tooth renewal. eLife 8:e47702. PubMed PMC

Sarkar L., Cobourne M., Naylor S., Smalley M., Dale T., Sharpe P. T. (2000). Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc. Natl. Acad. Sci. U.S.A. 97 4520–4524. 10.1073/pnas.97.9.4520 PubMed DOI PMC

Schilling T. F. (2008). Anterior-posterior patterning and segmentation of the vertebrate head. Comp. Integr. Biol. 48 658–667. 10.1093/icb/icn081 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kyanig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schindelin J., Rueden C. T., Hiner M. C., Eliceiri K. W. (2015). The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Repr. Dev. 82 518–529. 10.1002/mrd.22489 PubMed DOI PMC

Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Schweickert A., Steinbeisser H., Blum M. (2001). Differential gene expression of Xenopus Pitx1, Pitx2b and Pitx2c during cement gland, stomodeum and pituitary development. Mech. Dev. 107 191–194. 10.1016/s0925-4773(01)00461-0 PubMed DOI

Sharpe P. T. (1995). Homeobox genes and orofacial development. Conn. Tiss. Res. 32 17–25. 10.3109/03008209509013701 PubMed DOI

Smith M. M. (2003). Vertebrate dentitions at the origin of jaws: when and how pattern evolved. Evol. Dev. 5 394–413. 10.1046/j.1525-142x.2003.03047.x PubMed DOI

Sobkow L., Epperlein H. H., Herklotz S., Straube W. L., Tanaka E. M. (2006). A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev. Biol. 290 386–397. 10.1016/j.ydbio.2005.11.037 PubMed DOI

Soukup V., Epperlein H. H., Horácek I., Cerny R. (2008). Dual epithelial origin of vertebrate oral teeth. Nature 455 795–798. 10.1038/nature07304 PubMed DOI

Soukup V., Horácek I., Cerny R. (2013). Development and evolution of the vertebrate primary mouth. J. Anat. 222 79–99. 10.1111/j.1469-7580.2012.01540.x PubMed DOI PMC

Stock D. W., Jackman W. R., Trapani J. (2006). Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development 133 3127–3137. 10.1242/dev.02459 PubMed DOI

Streelman J. T., Webb J. F., Albertson R. C., Kocher T. D. (2003). The cusp of evolution and development: a model of cichlid tooth shape diversity. Evol. Dev. 5 600–608. 10.1046/j.1525-142x.2003.03065.x PubMed DOI

Stundl J., Pospisilova A., Jandzik D., Fabian P., Dobiasova B., Minarik M., et al. (2019). Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. eLife 8:e43531. PubMed PMC

Stundl J., Pospisilova A., Matějková T., Psenicka M., Bronner M. E., Cerny R. (2020). Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev. Biol. 467 14–29. 10.1016/j.ydbio.2020.08.007 PubMed DOI PMC

Takata C. (1960). The differentiation in vitro of the isolated endoderm in the presence of the neural fold in Triturus pyrrhogaster. Embryologia 5 194–205. 10.1111/j.1440-169x.1960.tb00088.x DOI

Thiery A. P., Shono T., Kurokawa D., Britz R., Johanson Z., Fraser G. J. (2017). Spatially restricted dental regeneration drives pufferfish beak development. Proc. Natl. Acad. Sci. U.S.A. 114 E4425–E4434. PubMed PMC

Tucker A., Sharpe P. (2004). The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet. 5 499–508. PubMed

Van der heyden C., Huysseune A. (2000). Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae). Dev. Dyn. 219 486–496. 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1069>3.0.co;2-z PubMed DOI

Wilde C. E. (1955). The urodele neuroepithelium I, The differentiation in vitro of the cranial neural crest. J. Exp. Zool. 130 573–591. 10.1002/jez.1401300309 DOI

Yu W., Sun Z., Sweat Y., Sweat M., Venugopalan S. R., Eliason S., et al. (2020). Pitx2-Sox2-Lef-1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development 147:dev186023. 10.1242/dev.186023 PubMed DOI PMC

Zhang Z., Lan Y., Chai Y., Jiang R. (2009). Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science 323 1232–1234. 10.1126/science.1167418 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...