Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes

. 2020 Nov 01 ; 467 (1-2) : 14-29. [epub] 20200821

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32835652

Grantová podpora
P01 HD037105 NICHD NIH HHS - United States
P50 HG004071 NHGRI NIH HHS - United States
R01 DE024157 NIDCR NIH HHS - United States
R35 NS111564 NINDS NIH HHS - United States

Odkazy

PubMed 32835652
PubMed Central PMC7572781
DOI 10.1016/j.ydbio.2020.08.007
PII: S0012-1606(20)30228-1
Knihovny.cz E-zdroje

The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.

Zobrazit více v PubMed

Agassiz A, 1878. The Development of Lepidosteus . Part I. Proc. Am. Acad. Arts Sci 14, 65–76. 10.2307/25138527 DOI

Baker CVH, Bronner-Fraser M, 1997. The origins of the neural crest. Part I: embryonic induction. Mech. Dev 69, 3–11. 10.1016/S0925-4773(97)00132-9 PubMed DOI

Balfour FM, Parker WN, 1882. VII. On the structure and development of Lepidosteus. Philos. Trans. R. Soc. B Biol. Sci 173, 359–442. 10.1098/rstl.1882.0008 DOI

Ballard WW, 1986. Stages and rates of normal development in the holostean Fish, Amia calva. J. Exp. Zool 238, 337–354. 10.1002/jez.1402380308 DOI

Ballard WW, Mellinger J, Lechenault H, 1993. A Series of Normal Stages for Development of Scyliorhinus canicula , the Lesser Spotted Dogfish (Chondrichthyes: Scyliorhinidae). J. Exp. Zool 267, 318–336. 10.1002/jez.1402670309 DOI

Barske L, Fabian P, Hirschberger C, Jandzik D, Square T, Xu P, Nelson N, Yu HV, Medeiros DM, Gillis JA, Crump JG, 2020. Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer Lindsey Barske. bioRxiv 1–36. PubMed PMC

Basch ML, Bronner-Fraser M, García-Castro MI, 2006. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441, 1–5. 10.1038/nature04684 PubMed DOI

Bemis WE, Grande L, 1992. Early Development of the Actinopterygian Head. I. External Development and Staging of the Paddlefish Polyodon spathula. J. Morphol 213, 47–83. 10.1002/jmor.1052130106 PubMed DOI

Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G, 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17, 1–40. 10.1186/s12862-017-0958-3 PubMed DOI PMC

Betters E, Charney RM, Garcia-Castro MI, 2018. Early speci fi cation and development of rabbit neural crest cells. Dev. Biol 444, Suppl 1, S181–S192. 10.1016/j.ydbio.2018.06.012 PubMed DOI PMC

Borisov VB, Shkil FN, Abdissa B, Smirnov SV, 2012. Development of the Cranium in the Large African Hexaploid Barb Labeobarbus (=Barbus) intermedius (Cyprinidae; Teleostei). J. Ichthyol 52, 838–860. 10.1134/S0032945212110021 DOI

Bronner ME, Ledouarin NM, 2012. Development and evolution of the neural crest: An overview. Dev. Biol 366, 2–9. 10.1016/j.ydbio.2011.12.042 PubMed DOI PMC

Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn G, Parsons M, Stern CD, Mayor R, 2008. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961. 10.1038/nature07441 PubMed DOI PMC

Cerny R, Cattell M, Sauka-Spengler T, Bronner-Fraser M, Yu F, Meulemans Medeiros D, 2010. Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc. Natl. Acad. Sci 107, 17262–17267. 10.1073/pnas.1009304107 PubMed DOI PMC

Cerny R, Lwigale P, Ericsson R, Meulemans D, Epperlein H-H, Bronner-Fraser M, 2004. Developmental origins and evolution of jaws: new interpretation of “maxillary” and “mandibular.” Dev. Biol 276, 225–236. 10.1016/j.ydbio.2004.08.046 PubMed DOI

Cerny R, Meulemans D, Berger J, Wilsch-Bräuninger M, Kurth T, Bronner-Fraser M, Epperlein H-H, 2004. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev. Biol 266, 252–269. 10.1016/j.ydbio.2003.09.039 PubMed DOI

Cheung M, Briscoe J, 2003. Neural crest development is regulated by the transcription factor. Development 130, 5681–5693. 10.1242/dev.00808 PubMed DOI

Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Riili FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ, 2013. Pattern and polarity in the development and evolution of the gnathostome jaw: Both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev. Biol 377, 428–448. 10.1016/j.ydbio.2013.02.022 PubMed DOI

Cooper MS, Virta VC, 2007. Evolution of Gastrulation in the Ray-Finned (Actinopterygian) Fishes 308B: 591–608. 10.1002/jez.b.21142 PubMed DOI

Couly GF, Coltey PM, Le Douarin NM, 1993. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429. PubMed

Creuzet S, Couly G, Vincent C, Le Douarin NM, 2002. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129, 4301–4313. PubMed

Crump JG, Maves L, Lawson ND, Weinstein BM, Kimmel CB, 2004. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development 131, 5703–5716. 10.1242/dev.01444 PubMed DOI

David NB, Saint-Etienne L, Tsang M, Schilling TF, Rosa FM, 2002. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development 129, 4457–4468. PubMed

de Beer GR, 1937. The development of the vertebrate skull. Oxford University Press, London.

Dean B, 1895. The early development of Gar-pike and Sturgeon. J. Morphol XI 10.1002/jmor.1050110102 DOI

Del Pino E, Medina A, 1998. Neural development in the marsupial frog Gastrotheca riobambae. Int. J. Dev. Biol 42, 723–731. PubMed

Del Pino E, Ávila M-E, Pérez OD, Benítez M-S, Alarcón I, Noboa V, Moya IM, 2004. Development of the dendrobatid frog Colostethus machalilla. Int. J. Dev. Biol 48, 663–670. 10.1387/ijdb.041861ed PubMed DOI

Dettlaff TA, Ginsburg AS, Schmalhausen OI, 1993. Sturgeon Fishes-Developmental Biology and Aquaculture. Springer

Diaz RE Jr; Shylo NA; Roellig D; Bronner M, Trainor PA, 2019. Filling in the phylogenetic gaps: Induction, migration, and differentiation of neural crest cells in a squamate reptile, the Veiled Chameleon (Chamaeleo calyptratus). Dev. Dyn 248, 709–727. 10.1002/dvdy.38. PubMed DOI

Didier DA, LeClair EE, Vanbuskirk DR, 1998. Embryonic Staging and External Features of Development of the Chimaeroid Fish , Callorhinchus milii (Holocephali, Callorhinchidae). J. Morphol 236, 25–47. 10.1002/(SICI)1097-4687(199804)236:1<25::AID-JM0R2>3.0.C0;2-N PubMed DOI

Diedhiou S, Bartsch P, 2009. Staging of the early development of Polypterus (Cladistia: Actinopterygii), in: Development of Non-Teleost Fishes; pp. 104–169.

Donoghue PCJ, Keating JN, 2014. Early Vertebrate Evolution. Palaeontology 57, 1–15. 10.1111/pala.12125 DOI

Eagleson GW, 1996. Developmental neurobiology of the anterior areas in amphibians: urodele perspectives. Int. J. Dev. Biol 40, 735–743. PubMed

Falck P, Hanken J, Olsson L, 2002. Cranial neural crest emergence and migration in the Mexican axolotl (Ambystoma mexicanum). Zoology 105, 195–202. 10.1078/0944-2006-00079 PubMed DOI

Forey P, Janvier P, 1994. Evolution of the early vertebrates. Sci. Am 82, 554–565.

Gans C, Northcutt RG, 1983. Neural Crest and the Origin of Vertebrates: A New Head. Science 220, 268–274. doi: 10.1126/science.220.4594.268 PubMed DOI

Gillis JA, Alsema EC, Criswell KE, 2017. Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proc. Natl. Acad. Sci 18, 1–6. 10.1073/pnas.1713827114 PubMed DOI PMC

Gouignard N, Andrieu C, Theveneau E, 2018. Neural crest delamination and migration: Looking forward to the next 150 years. Genesis 56:e23107 10.1002/dvg.23107 PubMed DOI

Graham A, 2008. Deconstructing the pharyngeal metamere. J. Exp. Zool. Part B Mol. Dev. Evol 310B, 336–344. 10.1002/jez.b.21182 PubMed DOI

Green SA, Simoes-Costa M, Bronner ME, 2015. Evolution of vertebrates as viewed from the crest. Nature 520, 474–482. 10.1038/nature14436 PubMed DOI PMC

Grevellec A, Tucker AS, 2010. Seminars in Cell & Developmental Biology The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin. Cell Dev. Biol 21, 325–332. 10.1016/j.semcdb.2010.01.022 PubMed DOI

Hall BK, 2009. Neural Crest Derivatives, in: The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution. pp. 159–268.

Harrington MJ, Hong E, Brewster R, 2009. Comparative Analysis of Neurulation: First Impressions Do Not Count. Mol. Reprod. Dev 76, 954–965. 10.1002/mrd.21085 PubMed DOI

Hockman D, Chong-Morrison V, Green SA, Gavriouchkina D, Candido-Ferreira I, Ling ITC, Williams RM, Amemiya CT, Smith JJ, Bronner ME, Sauka-Spengler T, 2019. A genome-wide assessment of the ancestral neural crest gene regulatory network. Nat. Commun 10, 1–15. 10.1038/s41467-019-12687-4 PubMed DOI PMC

Horigome N, Myojin M, Ueki T, Hirano S, Aizawa S, Kuratani S, 1999. Development of Cephalic Neural Crest Cells in Embryos of Lampetra japonica, with Special Reference to the Evolution of the Jaw. Dev. Biol 207, 287–308. 10.1006/dbio.1998.9175 PubMed DOI

Hughes LC, Orti G, Huang Y, Sun Y, Baldwin CC, Thompson AW, Arcila D, Betancur-R. R, Li C, Becker L, Bellora N, Zhao X, Li X, Wang M, Fang C, Xie B, Zhou Z, Huang H, Chen S, Venkatesh B, Shi Q, 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci 115, 6249–6254. 10.1073/pnas.1719358115 PubMed DOI PMC

Inoue JG, Miya M, Tsukamoto K, Nishida M, 2003. Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ ancient fish”. Mol. Phylogenet. Evol 26, 110–120. 10.1016/S1055-7903(02)00331-7 PubMed DOI

Iwamatsu T, 2004. Stages of normal development in the medaka Oryzias latipes. Mech. Dev 121, 605–618. 10.1016/j.mod.2004.03.012 PubMed DOI

Jaroszewska M, Dabrowski K, 2009. Early Ontogeny of Semionotiformes and Amiiformes (Neopterygii: Actinopterygii), in: Development of Non-Teleost Fishes; pp. 230–274.

Johanson Z, Boisvert C, Maksimenko A, Currie P Trinajstic K, 2015. Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion. PLoS One 10(9):e0135138, 1–19. 10.1371/journal.pone.0135138 PubMed DOI PMC

Kerr JG, 1907. The development of Polypterus senegalus Cuvier, in: The Work of John Samuel Budgett. Cambridge University Press.

Kerr JG, 1919. Textbook of Embryology. Vol II. Vertebrata with the exception of mammalia. Macmillan and CO., London.

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF, 1995. Stages of embryonic development of the zebrafish. Dev. Dyn 203, 253–310. 10.1002/aja.1002030302 PubMed DOI

Konstantinidis P, Warth P, Naumann B, Metscher B, Hilton EJ, Olsson L, 2015. The Developmental Pattern of the Musculature Associated with the Mandibular and Hyoid Arches in the Longnose Gar, Lepisosteus osseus (Actinopterygii, Ginglymodi, Lepisosteiformes). Copeia 103, 920–932. 10.1643/OT-14-195 DOI

Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R, 2010. Cranial neural crest migration: New rules for an old road. Dev. Biol 344, 543–554. 10.1016/j.ydbio.2010.04.010 PubMed DOI PMC

Kunz YW, Luer CA, Kapoor BG, 2009. Development of Non-Teleost Fishes. Science Publishers, Enfield.

Kuo BR, Erickson CA, 2010. Regional differences in neural crest morphogenesis Regional differences in neural crest morphogenesis. Cell Adh. Migr 4, 567–585. 10.4161/cam.4.4.12890 PubMed DOI PMC

Kuratani S, Horigome N, Ueki T, Aizawa S, 1998. Stereotyped Axonal Bundle Formation and Neuromeric Patterns in Embryos of a Cyclostome , Lampetra japonica. J. Comp. Neurol 391, 99–114. PubMed

Kuratani A, Kuratani S, Horigome N, 2000. Developmental Morphology of Branchiomeric Nerves in a Cat Shark, Scyliorhinus torazame, with Special Reference to Rhombomeres, Cephalic Mesoderm, and Distribution Patterns of Cephalic Crest Cells. Zoolog. Sci. 17, 893–909. 10.2108/zsj.17.893 DOI

Le Douarin NM, Dupin E, 2014. The Neural Crest, a Fourth Germ Layer of the Vertebrate Embryo: Significance in Chordate Evolution, in: Trainor PA (Ed.), Neural Crest Cells. Elsevier, pp. 3–26.

Long WL, Ballard WW, 2001. Normal embryonic stages of the Longnose Gar, Lepisosteus osseus. BMC Dev. Biol 1 10.1186/1471-213X-1-6 PubMed DOI PMC

Lowery LA, Sive H, 2004. Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech. Dev 121, 1189–1197. 10.1016/j.mod.2004.04.022 PubMed DOI

Martik ML, Bronner ME, 2017. Regulatory Logic Underlying Diversification of the Neural Crest. Trends Genet. 33, 715–727. 10.1016/j.tig.2017.07.015 PubMed DOI PMC

Martik ML, Gandhi S, Uy BR, Gillis JA, Green SA, Simoes-Costa M, Bronner ME, 2019. Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678. 10.1038/s41586-019-1691-4 PubMed DOI PMC

McCauley DW, Bronner-Fraser M, 2003. Neural crest contributions to the lamprey head. Development 130, 2317–2327. 10.1242/dev.00451 PubMed DOI

Metscher BD, 2009. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn 238, 632–640. 10.1002/dvdy.21857 PubMed DOI

Meulemans Medeiros D, 2013. The evolution of the neural crest: new perspectives from lamprey and invertebrate neural crest-like cells. WIREs Dev. Biol 2, 1–15. 10.1002/wdev.85 PubMed DOI

Minarik M, Stundl J, Fabian P, Jandzik D, Metscher BD, Psenicka M, Gela D, Osorio-Pérez A, Arias-Rodriguez L, Horácek I, Cerny R, 2017. Pre-oral gut contributes to facial structures in non-teleost fishes. Nature 547, 209–212. 10.1038/nature23008 PubMed DOI

Minoux M, Rijli FM, 2010. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137, 2605–2621. 10.1242/dev.040048 PubMed DOI

Mitgutsch C, Olsson L, Haas A, 2009. Early embryogenesis in discoglossoid frogs: a study of heterochrony at different taxonomic levels. J. Zool. Syst. Evol. Res 47, 248–257. 10.1111/j.1439-0469.2008.00502.x DOI

Mitgutsch C, Piekarski N, Olsson L, Haas A, 2008. Heterochronic shifts during early cranial neural crest cell migration in two ranid frogs. Acta Zool. 89, 69–78. 10.1111/j.1463-6395.2007.00295.x DOI

Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B, 2003. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl. Acad. Sci 100, 9360–9365. 10.1073/pnas.1631288100 PubMed DOI PMC

Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H, 2018. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. Plos Genet. 14:e100726 https://doi.org/DOI: 10.1371/journal.pgen.1007260 PubMed DOI PMC

Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL, 2012. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl. Acad. Sci 109, 13698–13703. 10.1073/pnas.1206625109 PubMed DOI PMC

Nieto MA, Sechrist J, Wilkinson DG, Bronner-Fraser M, 1995. Relationship between spatially restricted Krox-20 gene expression in branchial neural crest and segmentation in the chick embryo hindbrain. EMBO J. 14, 1697–1710. 10.1002/j.1460-2075.1995.tb07159.x PubMed DOI PMC

Noden DM, 1988. Interactions and fates of avian craniofacial mesenchyme. Development 103, 121–140. PubMed

Northcutt G, Gans C, 1983. The Genesis of Neural Crest and Epidermal Placodes: A Reinterpretation of Vertebrate Origins. Q. Rev. Biol 58, 1–28. PubMed

Northcutt RG, 2005. The New Head Hypothesis Revisited. J. Exp. Zool. (Mol Dev Evol) 304B, 274–297. 10.1002/jez.b.21063 PubMed DOI

Odelin G, Faure E, Coulpier F, Di Bonito M, Bajolle F, Studer M, Avierinos J-F, Charnay P, Topilko P, Zaffran S, 2018. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve. Development 145, 1–10. 10.1242/dev.151944 PubMed DOI

Olsson L, Hanken J, 1996. Cranial Neural-Crest Migration and Chondrogenic Fate in the Oriental Fire-Bellied Toad Bombina orientalis: Defining the Ancestral Pattern of Head Development in Anuran Amphibians. J. Morphol. 229, 105–120. 10.1002/(SICI)1097-4687(199607)229:1<105::AID-JMOR7>3.0.CQ:2-2 PubMed DOI

Olsson L, Moury JD, Carl TF, Hastad O, Hanken J, 2002. Cranial neural crest-cell migration in the direct-developing frog, Eleutherodactylus coqui: molecular heterogeneity within and among migratory streams. Zoology 105, 3–13. 10.1078/0944-2006-00051 PubMed DOI

Patthey C, Gunhaga L, Edlund T, 2008. Early Development of the Central and Peripheral Nervous Systems Is Coordinated by Wnt and BMP Signals. PLoS One 3, 2–11. 10.1371/journal.pone.0001625 PubMed DOI PMC

Piekarski N, Gross JB, Hanken J, 2014. Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull. Nat. Commun 5, 1–9. 10.1038/ncomms6661 PubMed DOI PMC

Piotrowski T, Nüsslein-Volhard C, 2000. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev. Biol 225, 339–356. 10.1006/dbio.2000.9842 PubMed DOI

Pospisilova A, Miller V, Holcman R, Sanda R, Stundl J, 2019. Embryonic and larval development of the northern pike: An emerging fish model system for evo-devo research. J. Morphol 280, 1118–1140. 10.1002/jmor.21005 PubMed DOI

Richardson J, Shono T, Okabe M, Graham A, 2012. The presence of an embryonic opercular flap in amniotes. Proc. R. Soc. B Biol. Sci 279, 224–229. 10.1098/rspb.2011.0740 PubMed DOI PMC

Richter M, Underwood C, 2018. Origin, Development and Evolution of the Fish Skull, in: Johanson Z, Underwood C, Richter M (Eds.), Evolution and Development of Fishes; pp. 144–159.

Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE, 2019. Neural crest development: insights from the zebrafish. Dev. Dyn 249, 1–24. 10.1002/dvdy.122 PubMed DOI PMC

Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, Lemon C, Bird NH, Koop BF, 2014. The genome and linkage map of the northern pike (Esox lucius): Conserved synteny revealed between the salmonid sister group and the neoteleostei. PLoS One 9 https://doi.orq/10.1371/journal.pone.0102089 PubMed DOI PMC

Rothstein M, Bhattacharya D, Simões-Costa M, 2018. The molecular basis of neural crest axial identity. Dev. Biol 444, S170–S180. 10.1016/j.ydbio.2018.07.026 PubMed DOI PMC

Santagati F, Rijli FM, 2003. Cranial Neural Crest and the Building of the Vertebrate Head. Nat. Rev. Neurosci 4, 806–820. 10.1038/nrn1221 PubMed DOI

Sauka-Spengler T, Bronner-Fraser M, 2008. A gene regulatory network orchestrates neural crest formation. Nat. Rev. Mol. Cell Biol 9, 557–568. 10.1038/nrm2428 PubMed DOI

Schilling TF, Kimmel CB, 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494. PubMed

Schmitz B, Papan C, Campos-Ortega JA, 1993. Neurulation in the anterior trunk region of the zebrafish Brachydanio rerio. Roux’s Arch. Dev. Biol 202, 250–259. PubMed

Schneider RA, 2018. Neural crest and the origin of species-specific pattern. Genesis 56:e23219, 1–33. 10.1002/dvg.23219 PubMed DOI PMC

Schreckenberg GM, Jacobson AG, 1975. Normal Stages of Development Ambystoma of the Axolotl, mexicanum. Dev. Biol 42, 391–400. 10.1016/0012-1606(75)90343-7 PubMed DOI

Simoes-Costa M, Bronner ME, 2013. Insights into neural crest development and evolution from genomic analysis. Genome Res. 23, 1069–1080. 10.1101/gr.157586.113 PubMed DOI PMC

Simões-Costa M, Bronner ME, 2015. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257. 10.1242/dev.105445 PubMed DOI PMC

Simões-Costa M, Tan-Cabugao J, Antoshechkin I, Sauka-Spengler T, Bronner ME, 2014. Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res. 24, 281–290. 10.1101/gr.161182.113. PubMed DOI PMC

Smith KK, 2001. Early development of the neural plate, neural crest and facial region of marsupials. J. Anat 199, 121–131. 10.1046/j.1469-7580.2001.19910121.x PubMed DOI PMC

Soukup V, Horácek I, Cerny R, 2013. Development and evolution of the vertebrate primary mouth. J. Anat 222, 79–99. 10.1111/j.1469-7580.2012.01540.x PubMed DOI PMC

Square T, Jandzik D, Cattell M, Coe A, Doherty J, Meulemans Medeiros D, 2015. Evolution of Developmental Control Mechanisms A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. Dev. Biol 397, 293–304. 10.1016/j.ydbio.2014.10.016 PubMed DOI

Square T, Jandzik D, Romášek M, Cerny R, Meulemans Medeiros D, 2017. The origin and diversi fi cation of the developmental mechanisms that pattern the vertebrate head skeleton. Dev. Biol 427, 219–229. 10.1016/j.ydbio.2016.11.014 PubMed DOI

Stewart RA, Arduini BL, Berghmans S, George RE, Kanki JP, Henion PD, Look AT, 2006. Zebrafish foxd3 is selectively required for neural crest specification , migration and survival. Dev. Biol 292, 174–188. 10.1016/j.ydbio.2005.12.035 PubMed DOI

Stundl J, Pospisilova A, Jandzik D, Fabian P, Dobiasova B, Minarik M, Metscher BD, Soukup V, Cerny R, 2019. Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. Elife 8:e43531, 1–13. 10.7554/eLife.43531 PubMed DOI PMC

Szabó A, Mayor R, 2018. Mechanisms of Neural Crest Migration. Annu. Rev. Genet 52, 43–63. 10.1146/annurev-genet-120417-031559 PubMed DOI

Takeuchi M, Takahashi M, Okabe M, Aizawa S, 2009. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev. Biol 332, 90–102. https://doi.Org/10.1016/j.ydbio.2009.05.543 PubMed DOI

Tan SS, Morriss-Kay GM, 1986. Analysis of cranial neural crest cell migration and early fates in postimplantation rat chimaeras. Development. Morphol 98, 21–58. PubMed

Taylor WR, Van Dyke GC, 1985. Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 107–119.

Theveneau E, Mayor R, 2012. Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol 366, 34–54. 10.1016/j.ydbio.2011.12.041 PubMed DOI

Vandewalle P, Chikou A, Laleyé P, Parmentier E, Huriaux F, Focant B, 1999. Early development of the chondrocranium in Chrysichthys auratus. J. Fish Biol 55, 795–808. 10.1111/j.1095-8649.1999.tb00718.x DOI

Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R, 1989. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409. 10.1038/341405a0 PubMed DOI

Yeo GH, Cheah FSH, Winkler C, Jabs EW, Venkatesh B, Chong SS, 2009. Phylogenetic and evolutionary relationships and developmental expression patterns of the zebrafish twist gene family. Dev. Genes Evol 219, 289–300. 10.1007/s00427-009-0290-z PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...