Ancient vertebrate dermal armor evolved from trunk neural crest
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
K99 HD100587
NICHD NIH HHS - United States
R35 NS111564
NINDS NIH HHS - United States
PubMed
37459514
PubMed Central
PMC10372632
DOI
10.1073/pnas.2221120120
Knihovny.cz E-zdroje
- Klíčová slova
- neural crest, scales, skeleton, sterlet sturgeon, vertebrate evolution,
- MeSH
- biologická evoluce MeSH
- crista neuralis * MeSH
- lebka MeSH
- obratlovci * genetika MeSH
- osteogeneze MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Bone is an evolutionary novelty of vertebrates, likely to have first emerged as part of ancestral dermal armor that consisted of osteogenic and odontogenic components. Whether these early vertebrate structures arose from mesoderm or neural crest cells has been a matter of considerable debate. To examine the developmental origin of the bony part of the dermal armor, we have performed in vivo lineage tracing in the sterlet sturgeon, a representative of nonteleost ray-finned fish that has retained an extensive postcranial dermal skeleton. The results definitively show that sterlet trunk neural crest cells give rise to osteoblasts of the scutes. Transcriptional profiling further reveals neural crest gene signature in sterlet scutes as well as bichir scales. Finally, histological and microCT analyses of ray-finned fish dermal armor show that their scales and scutes are formed by bone, dentin, and hypermineralized covering tissues, in various combinations, that resemble those of the first armored vertebrates. Taken together, our results support a primitive skeletogenic role for the neural crest along the entire body axis, that was later progressively restricted to the cranial region during vertebrate evolution. Thus, the neural crest was a crucial evolutionary innovation driving the origin and diversification of dermal armor along the entire body axis.
Department of Evolutionary Biology Theoretical Biology Unit University of Vienna 1010 Vienna Austria
Department of Integrative Biology Michigan State University East Lansing MI 48824
Department of Organismal Biology Uppsala University SE 75236 Uppsala Sweden
Department of Zoology Faculty of Science Charles University Prague 128 00 Prague Czech Republic
Division of Biology and Biological Engineering California Institute of Technology Pasadena CA 91125
Ecology Evolution and Behavior Program Michigan State University East Lansing MI 48824
Zobrazit více v PubMed
Le Douarin N. M., The Neural Crest (Cambridge University Press, 1982).
Gans C., Northcutt R. G., Neural crest and the origin of vertebrates: A new head. Science 220, 268–274 (1983). PubMed
Hall B. K., The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution (Springer, US, 2009).
Simoes-Costa M., Bronner M. E., Reprogramming of avian neural crest axial identity and cell fate. Science 352, 1570–1573 (2016). PubMed PMC
McGonnell I. M., Graham A., Trunk neural crest has skeletogenic potential. Curr. Biol. 12, 767–771 (2002). PubMed
Lumsden A. G., Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103, 155–169 (1988). PubMed
Soldatov R., et al. , Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9636 (2019). PubMed
Sire J.-Y., Donoghue P. C. J., Vickaryous M. K., Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J. Anat. 214, 409–440 (2009). PubMed PMC
Rocha M., et al. , From head to tail: Regionalization of the neural crest. Development 147, dev193888 (2020). PubMed PMC
Smith M. M., Hall B. K., A developmental model for evolution of the vertebrate exoskeleton and teeth in Evolutionary Biology, Hecht M. K., Maclntyre R. J., Clegg M. T., Eds. (Springer US, 1993), vol. 27, pp. 387–448.
Vickaryous M. K., Sire J.-Y., The integumentary skeleton of tetrapods: Origin, evolution, and development. J. Anat. 214, 441–464 (2009). PubMed PMC
Martik M. L., et al. , Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678 (2019). PubMed PMC
Gillis J. A., Alsema E. C., Criswell K. E., Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proc. Natl. Acad. Sci. U.S.A. 114, 13200–13205 (2017). PubMed PMC
Jing J., et al. , Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat. Commun. 13, 4803 (2022). PubMed PMC
Smith M. M., Hall B. K., Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol. Rev. 65, 277–373 (1990). PubMed
Keating J. N., Marquart C. L., Donoghue P. C., Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton. J. Morphol. 276, 657–680 (2015). PubMed PMC
Shimada A., et al. , Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1638–1639 (2013). PubMed PMC
Mongera A., Nüsslein-Volhard C., Scales of fish arise from mesoderm. Curr. Biol. 23, R338–R339 (2013). PubMed
Lee R. T. H., Thiery J. P., Carney T. J., Dermal fin rays and scales derive from mesoderm, not neural crest. Curr. Biol. 23, R336–R337 (2013). PubMed
Smith M., et al. , Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio. Proc. Biol. Sci. 256, 137–145 (1994).
Kague E., et al. , Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One 7, 1–13 (2012). PubMed PMC
Hilton E. J., Grande L., Review of the fossil record of sturgeons, family Acipenseridae (Actinopterygii: Acipenseriformes), from North America. J. Paleontol. 80, 672–680 (2006).
Alison M., et al. , Paddlefish and sturgeon (Chondrostei: Acipenseriformes: Polyodontidae and Acipenseridae) from lower Paleocene deposits of Montana, U.S.A. J. Vertebr. Paleontol. 40, 2 (2020).
Sewertzoff A. N., The development of the scales of Acipenser ruthenus. J. Morphol. 42, 523–560 (1926).
Bemis W. E., Findeis E. K., Grande L., An overview of Acipenseriformes. Environ. Biol. Fishes 48, 25–71 (1997).
Qu Q., et al. , New genomic and fossil data illuminate the origin of enamel. Nature 526, 108–111 (2015). PubMed
Hertwig O., Ueber das Hautskelet der Fische. 2: Das Hautskelet der Ganoiden (Lepidosteus und Polypterus). Morphol. Jahrb. 5, 1–21 (1879).
Kerr T., The scales of primitive living actinopterygians. Proc. Zool. Soc. Lond. 122, 55–78 (1952).
Sire J.-Y., Scales in young Polypterus senegalus are elasmoid: new phylogenetic implications. Am. J. Anat. 186, 315–323 (1989). PubMed
Sire J.-Y., Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation. Anat. Rec. 240, 189–207 (1994). PubMed
Mori S., Nakamura T., Redeployment of odontode gene regulatory network underlies dermal denticle formation and evolution in suckermouth armored catfish. Sci. Rep. 12, 6172 (2022). PubMed PMC
Liu Z., et al. , The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 7, 11757 (2016). PubMed PMC
Rivera-Rivera C. J., Montoya-Burgos J. I., Trunk dental tissue evolved independently from underlying dermal bony plates but is associated with surface bones in living odontode-bearing catfish. Proc. Biol. Sci. 284, 20171831 (2017). PubMed PMC
Martik M. L., Bronner M. E., Regulatory logic underlying diversification of the neural crest. Trends Genet. 33, 715–727 (2017). PubMed PMC
Smith M. M., Putative skeletal neural crest cells in early late ordovician vertebrates from colorado. Science 251, 301–303 (1991). PubMed
Repetski J. E., A fish from the Upper Cambrian of North America. Science 200, 529–531 (1978). PubMed
Smith M. P., Sansom I. J., Repetski E. J., Histology of the first fish. Science 380, 702–704 (1996).
Giles S., Rücklin M., Donoghue P. C. J., Histology of ‘placoderm’ dermal skeletons: Implications for the nature of the ancestral gnathostome. J. Morphol. 274, 627–644 (2013). PubMed PMC
Keating J. N., Donoghue P. C. J., Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton. Proc. Biol. Sci. 283, 20152917 (2016). PubMed PMC
Janvier P., Facts and fancies about early fossil chordates and vertebrates. Nature 520, 483–489 (2015). PubMed
Miyashita T., et al. , Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological-molecular conflict in early vertebrate phylogeny. Proc. Natl. Acad. Sci. U.S.A. 116, 2146–2151 (2019). PubMed PMC
Miyashita T., et al. , Non-ammocoete larvae of Paleozoic stem lampreys. Nature 591, 408–412 (2021). PubMed
Chai Y., et al. , Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000). PubMed
Matsuoka T., et al. , Neural crest origins of the neck and shoulder. Nature 436, 347–355 (2005). PubMed PMC
Cebra-Thomas J. A., et al. , Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol. Dev. 9, 267–277 (2007). PubMed
Cebra-Thomas J. A., et al. , Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomesenchyme in the plastron. Dev. Dyn. 242, 1223–1235 (2013). PubMed
Krmpotic C. M., et al. , The dorsal integument of the Southern Long-nosed armadillo Dasypus hybridus (Cingulata, Xenarthra), and a possible neural crest origin of the osteoderms. Discussing evolutive consequences for Amniota. J. Mamm. Evol. 28, 635–645 (2021).
Teng C. S., et al. , Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary. eLife 8, e52814 (2019). PubMed PMC
Sleight V. A., Gillis J. A., Embryonic origin and serial homology of gill arches and paired fins in the skate, Leucoraja erinacea. eLife 9, e60635 (2020). PubMed PMC
Sire J.-Y., Akimenko M.-A., Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 233–247 (2004). PubMed
Adameyko I., Elaboration of fates in neural crest lineage during evolution in Evolving Neural Crest Cells, Eames B. F., Medeiros D., Adameyko I., Eds. (CRC Press, Boca Raton, 2020), pp. 157–183
Dettlaff T. A., Ginsburg A. S., Schmalhausen O. I., Sturgeon Fishes: Developmental Biology and Aquaculture (Springer Verlag, 1993).
Choi H. M. T., et al. , Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development 145, 1–10 (2018). PubMed PMC
Criswell K. E., Gillis A. J., Resegmentation is an ancestral feature of the gnathostome vertebral skeleton. eLife 9, e51696 (2020). PubMed PMC
Stundl J., et al. , Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev. Biol. 467, 14–29 (2020). PubMed PMC
Karolchik D., et al. , The UCSC genome browser database. Nucleic Acids Res. 31, 51–54 (2003). PubMed PMC
Langmead B., Salzburg S., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC
Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed
Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Gu Z., Eils R., Schlesner M., Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). 10.1093/bioinformatics/btw313. PubMed DOI
Guindon S., et al. , New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010). PubMed
Metscher B. D., MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn. 238, 632–640 (2009). PubMed
Connolly M. H., Yelick P. C., High-throughput methods for visualizing the teleost skeleton: Capturing autofluorescence of alizarin red. J. Appl. Ichthyol. 26, 274–277 (2010).
Stundl J., et al. , Ancient vertebrate dermal armor evolved from trunk neural crest. NCBI Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235280. Deposited 24 June 2023. PubMed PMC
Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2a/b
Ancient vertebrate dermal armor evolved from trunk neural crest