Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2a/b
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Agreement No. 897949
Marie Curie - United Kingdom
21-24018
Alex's Lemonade Stand Foundation for Childhood Cancer
California Institute of Technology
Grant Award # 21-24018
Alex's Lemonade Stand Foundation for Childhood Cancer
R35NS111564
NIH HHS - United States
R35 NS111564
NINDS NIH HHS - United States
897949
Horizon 2020
PubMed
39415595
PubMed Central
PMC11646113
DOI
10.1242/dmm.050862
PII: 362385
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Inducible knockout, Meninges, Neurofibromatosis type 2, Schwann cells, Zebrafish,
- MeSH
- dánio pruhované * genetika embryologie MeSH
- geneticky modifikovaná zvířata MeSH
- genový knockout * MeSH
- larva metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- neurofibromatóza 2 genetika patologie metabolismus MeSH
- neurofibromatózy genetika patologie metabolismus MeSH
- neurofibromin 2 * genetika metabolismus nedostatek MeSH
- proliferace buněk MeSH
- proteiny dánia pruhovaného * genetika metabolismus nedostatek MeSH
- Schwannovy buňky metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- neurofibromin 2 * MeSH
- proteiny dánia pruhovaného * MeSH
Neurofibromatosis type 2 (NF-2) is a dominantly inherited genetic disorder that results from variants in the tumor suppressor gene, neurofibromin 2 (NF2). Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by inducible genetic knockout of nf2a/b, the zebrafish homologs of human NF2. Analysis of nf2a and nf2b expression revealed ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displayed lower expression levels. Induction of nf2a/b knockout at early stages increased the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggered the development of a spectrum of tumors, including vestibular Schwannomas, spinal Schwannomas, meningiomas and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Zobrazit více v PubMed
Akhmametyeva, E. M., Mihaylova, M. M., Luo, H., Kharzai, S., Welling, D. B. and Chang, L.-S. (2006). Regulation of the Neurofibromatosis 2 gene promoter expression during embryonic development. Dev. Dyn. 235, 2771-2785. 10.1002/dvdy.20883 PubMed DOI
Alasaadi, D. N., Alvizi, L., Hartmann, J., Stillman, N., Moghe, P., Hiiragi, T. and Mayor, R. (2024). Competence for neural crest induction is controlled by hydrostatic pressure through Yap. Nat. Cell Biol. 26, 1-12. 10.1038/s41556-024-01378-y PubMed DOI PMC
Campian, J. and Gutmann, D. H. (2017). CNS Tumors in neurofibromatosis. J. Clin. Oncol. 35, 2378-2385. 10.1200/JCO.2016.71.7199 PubMed DOI PMC
Chen, J. L., Miller, D. T., Schmidt, L. S., Malkin, D., Korf, B. R., Eng, C., Kwiatkowski, D. J. and Giannikou, K. (2022). Mosaicism in tumor suppressor gene syndromes: prevalence, diagnostic strategies, and transmission risk. Annu. Rev. Genomics Hum. Genet. 23, 331-361. 10.1146/annurev-genom-120121-105450 PubMed DOI
Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., Cole, M. A., Liu, D. R., Joung, J. K., Bauer, D. E.et al. (2019). CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224-226. 10.1038/s41587-019-0032-3 PubMed DOI PMC
Coy, S., Rashid, R., Stemmer-Rachamimov, A. and Santagata, S. (2020). An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 139, 643-665. 10.1007/s00401-019-02029-5 PubMed DOI PMC
den Bakker, M. A., Vissers, K. J., Molijn, A. C., Kros, J. M., Zwarthoff, E. C. and van der Kwast, T. H. (1999). Expression of the neurofibromatosis type 2 gene in human tissues. J. Histochem. Cytochem. 47, 1471-1479. 10.1177/002215549904701113 PubMed DOI
Ferre-Fernández, J.-J., Muheisen, S., Thompson, S. and Semina, E. V. (2022). CRISPR-Cas9-mediated functional dissection of the foxc1 genomic region in zebrafish identifies critical conserved cis-regulatory elements. Hum. Genomics 16, 49. 10.1186/s40246-022-00423-x PubMed DOI PMC
Gehlhausen, J. R., Park, S.-J., Hickox, A. E., Shew, M., Staser, K., Rhodes, S. D., Menon, K., Lajiness, J. D., Mwanthi, M., Yang, X.et al. (2015). A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum. Mol. Genet. 24, 1-8. 10.1093/hmg/ddu414 PubMed DOI PMC
Giovannini, M., Robanus-Maandag, E., van der Valk, M., Niwa-Kawakita, M., Abramowski, V., Goutebroze, L., Woodruff, J. M., Berns, A. and Thomas, G. (2000). Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617-1630. 10.1101/gad.14.13.1617 PubMed DOI PMC
Guerrant, W., Kota, S., Troutman, S., Mandati, V., Fallahi, M., Stemmer-Rachamimov, A. and Kissil, J. L. (2016). YAP mediates tumorigenesis in neurofibromatosis type 2 by promoting cell survival and proliferation through a COX-2-EGFR signaling axis. Cancer Res. 76, 3507-3519. 10.1158/0008-5472.CAN-15-1144 PubMed DOI PMC
Halliday, D., Emmanouil, B., Pretorius, P., MacKeith, S., Painter, S., Tomkins, H., Evans, D. G. and Parry, A. (2017). Genetic Severity Score predicts clinical phenotype in NF2. J. Med. Genet. 54, 657-664. 10.1136/jmedgenet-2017-104519 PubMed DOI PMC
Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H. and Halder, G. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27-36. 10.1038/ncb1339 PubMed DOI
Huynh, D. P., Tran, T. M., Nechiporuk, T. and Pulst, S. M. (1996). Expression of neurofibromatosis 2 transcript and gene product during mouse fetal development. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 7, 1551-1561. PubMed
Kalamarides, M., Niwa-Kawakita, M., Leblois, H., Abramowski, V., Perricaudet, M., Janin, A., Thomas, G., Gutmann, D. H. and Giovannini, M. (2002). Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 16, 1060-1065. 10.1101/gad.226302 PubMed DOI PMC
Kamenev, D., Sunadome, K., Shirokov, M., Chagin, A. S., Singh, A., Irion, U., Adameyko, I., Fried, K. and Dyachuk, V. (2021). Schwann cell precursors generate sympathoadrenal system during zebrafish development. J. Neurosci. Res. 99, 2540-2557. 10.1002/jnr.24909 PubMed DOI
Kim, W., Kim, S., Huang, S., Oghalai, J. S. and Applegate, B. E. (2019). Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system. Biomed. Opt. Express 10, 4395-4410. 10.1364/BOE.10.004395 PubMed DOI PMC
Laraba, L., Hillson, L., de Guibert, J. G., Hewitt, A., Jaques, M. R., Tang, T. T., Post, L., Ercolano, E., Rai, G., Yang, S.-M.et al. (2022). Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain 146, 1697-1713. 10.1093/brain/awac342 PubMed DOI PMC
Li, Q., Zhao, F. and Ju, Y. (2018). Germline mutation of CHEK2 in neurofibromatosis 1 and 2: Two case reports. Medicine 97, e10894. 10.1097/MD.0000000000010894 PubMed DOI PMC
McClatchey, A. I., Saotome, I., Ramesh, V., Gusella, J. F. and Jacks, T. (1997). The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev. 11, 1253-1265. 10.1101/gad.11.10.1253 PubMed DOI
McClatchey, A. I., Saotome, I., Mercer, K., Crowley, D., Gusella, J. F., Bronson, R. T. and Jacks, T. (1998). Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatictumors. Genes Dev. 12, 1121-1133. 10.1101/gad.12.8.1121 PubMed DOI PMC
Moon, K. H., Kim, H.-T., Lee, D., Rao, M. B., Levine, E. M., Lim, D.-S. and Kim, J. W. (2018). Differential expression of NF2 in neuroepithelial compartments is necessary for mammalian eye development. Dev. Cell 44, 13-28.e3. 10.1016/j.devcel.2017.11.011 PubMed DOI PMC
Oh, J.-E., Ohta, T., Satomi, K., Foll, M., Durand, G., McKay, J., Calvez-Kelm, F. L., Mittelbronn, M., Brokinkel, B., Paulus, W.et al. (2015). Alterations in the NF2/LATS1/LATS2/YAP Pathway in Schwannomas. J. Neuropathol. Exp. Neurol. 74, 952-959. 10.1097/NEN.0000000000000238 PubMed DOI
Okada, T., You, L. and Giancotti, F. G. (2007). Shedding light on Merlin's wizardry. Trends Cell Biol. 17, 222-229. 10.1016/j.tcb.2007.03.006 PubMed DOI
Patton, E. E., Zon, L. I. and Langenau, D. M. (2021). Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 20, 611-628. 10.1038/s41573-021-00210-8 PubMed DOI PMC
Ren, Y., Chari, D. A., Vasilijic, S., Welling, D. B. and Stankovic, K. M. (2021). New developments in neurofibromatosis type 2 and vestibular schwannoma. Neuro-Oncol. Adv. 3, vdaa153. 10.1093/noajnl/vdaa153 PubMed DOI PMC
Rice, R., Rice, D. P. C., Olsen, B. R. and Thesleff, I. (2003). Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Dev. Biol. 262, 75-87. 10.1016/S0012-1606(03)00355-5 PubMed DOI
Richardson, R., Tracey-White, D., Webster, A. and Moosajee, M. (2017). The zebrafish eye—a paradigm for investigating human ocular genetics. Eye 31, 68-86. 10.1038/eye.2016.198 PubMed DOI PMC
Roy, D., Subramaniam, B., Chong, W. C., Bornhorst, M., Packer, R. J. and Nazarian, J. (2024). Zebrafish-a suitable model for rapid translation of effective therapies for pediatric cancers. Cancers 16, 1361. 10.3390/cancers16071361 PubMed DOI PMC
Shin, J., Padmanabhan, A., de Groh, E. D., Lee, J.-S., Haidar, S., Dahlberg, S., Guo, F., He, S., Wolman, M. A., Granato, M.et al. (2012). Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis. Model. Mech. 5, 881-894. PubMed PMC
Skarie, J. M. and Link, B. A. (2009). FoxC1 Is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Invest. Ophthalmol. Vis. Sci. 50, 5026-5034. 10.1167/iovs.09-3447 PubMed DOI PMC
Solovieva, T. and Bronner, M. (2021). Schwann cell precursors: where they come from and where they go. Cells Dev. 166, 203686. 10.1016/j.cdev.2021.203686 PubMed DOI PMC
Stundl, J., Martik, M. L., Chen, D., Raja, D. A., Franěk, R., Pospisilova, A., Pšenička, M., Metscher, B. D., Braasch, I., Haitina, T.et al. (2023). Ancient vertebrate dermal armor evolved from trunk neural crest. Proc. Natl. Acad. Sci. USA 120, e2221120120. 10.1073/pnas.2221120120 PubMed DOI PMC
Szulzewsky, F., Arora, S., Arakaki, A. K. S., Sievers, P., Almiron Bonnin, D. A., Paddison, P. J., Sahm, F., Cimino, P. J., Gujral, T. S. and Holland, E. C. (2022). Both YAP1-MAML2 and constitutively active YAP1 drive the formation of tumors that resemble NF2 mutant meningiomas in mice. Genes Dev. 36, 857-870. 10.1101/gad.349876.122 PubMed DOI PMC
Tamura, R. (2021). Current understanding of neurofibromatosis type 1, 2, and schwannomatosis. Int. J. Mol. Sci. 22, 5850. 10.3390/ijms22115850 PubMed DOI PMC
Tanrıkulu, B. and Özek, M. M. (2019). Neurofibromatosis and hydrocephalus. In Pediatric Hydrocephalus (ed. Cinalli G., Özek M. M. and Sainte-Rose C.), pp. 1107-1118. Cham: Springer International Publishing.
Toledo, A., Grieger, E., Karram, K., Morrison, H. and Baader, S. L. (2018). Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation. PLoS ONE 13, e0196726. 10.1371/journal.pone.0196726 PubMed DOI PMC
Vivatbutsiri, P., Ichinose, S., Hytönen, M., Sainio, K., Eto, K. and Iseki, S. (2008). Impaired meningeal development in association with apical expansion of calvarial bone osteogenesis in the Foxc1 mutant. J. Anat. 212, 603-611. 10.1111/j.1469-7580.2008.00893.x PubMed DOI PMC
White, R., Rose, K. and Zon, L. (2013). Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13, 624-636. 10.1038/nrc3589 PubMed DOI PMC
Wiltbank, A. T., Steinson, E. R., Criswell, S. J., Piller, M. and Kucenas, S. (2022). Cd59 and inflammation regulate Schwann cell development. eLife 11, e76640. 10.7554/eLife.76640 PubMed DOI PMC
Woods, R., Friedman, J. M., Evans, D. G. R., Baser, M. E. and Joe, H. (2003). Exploring the “two-hit hypothesis” in NF2: tests of two-hit and three-hit models of vestibular schwannoma development. Genet. Epidemiol. 24, 265-272. 10.1002/gepi.10238 PubMed DOI
Yin, L., Maddison, L. A., Li, M., Kara, N., LaFave, M. C., Varshney, G. K., Burgess, S. M., Patton, J. G. and Chen, W. (2015). Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics 200, 431-441. 10.1534/genetics.115.176917 PubMed DOI PMC
Zhang, N., Bai, H., David, K. K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, P., Anders, R. A. and Pan, D. (2010). The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27-38. 10.1016/j.devcel.2010.06.015 PubMed DOI PMC