Identification of multiple transcription factor genes potentially involved in the development of electrosensory versus mechanosensory lateral line organs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
BB/F00818X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
38562141
PubMed Central
PMC10982350
DOI
10.3389/fcell.2024.1327924
PII: 1327924
Knihovny.cz E-zdroje
- Klíčová slova
- ampullary organ, electrosensory, lateral line organs, mechanosensory, neuromast, paddlefish, sterlet, sturgeon,
- Publikační typ
- časopisecké články MeSH
In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related "sister cell type" to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 25 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Thirteen are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Seven are electrosensory-restricted on the head (Irx5, Irx3, Insm1, Sp5, Satb2, Mafa and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a catshark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.
Department of Genetics University of Cambridge Cambridge United Kingdom
Department of Zoology University of Cambridge Cambridge United Kingdom
Zobrazit více v PubMed
Ahmed M., Wong E. Y. M., Sun J., Xu J., Wang F., Xu P.-X. (2012). Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev. Cell 22, 377–390. 10.1016/j.devcel.2011.12.006 PubMed DOI PMC
Baek S., Tran N. T. T., Diaz D. C., Tsai Y.-Y., Acedo J. N., Lush M. E., et al. (2022). Single-cell transcriptome analysis reveals three sequential phases of gene expression during zebrafish sensory hair cell regeneration. Dev. Cell 57, 799–819. 10.1016/j.devcel.2022.03.001 PubMed DOI PMC
Baker C. V. H. (2019). “The development and evolution of lateral line electroreceptors: insights from comparative molecular approaches,” in Electroreception: Fundamental Insights from Comparative Approaches. Editors Carlson B. A., Sisneros J. A., Popper A. N., Fay R. R. (Cham: Springer; ), 25–62. Available at: https://link.springer.com/chapter/10.1007/978-3-030-29105-1_2 . DOI
Baker C. V. H., Modrell M. S. (2018). Insights into electroreceptor development and evolution from molecular comparisons with hair cells. Integr. Comp. Biol. 58, 329–340. 10.1093/icb/icy037 PubMed DOI PMC
Baker C. V. H., Modrell M. S., Gillis J. A. (2013). The evolution and development of vertebrate lateral line electroreceptors. J. Exp. Biol. 216, 2515–2522. 10.1242/jeb.082362 PubMed DOI PMC
Ballard W. W., Mellinger J., Lechenault H. (1993). A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scylorhinidae). J. Exp. Zool. 267, 318–336. 10.1002/jez.1402670309 DOI
Baloch A. R., Franěk R., Tichopád T., Fučíková M., Rodina M., Pšenička M. (2019). Dnd1 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate production. Animals 9, 174. 10.3390/ani9040174 PubMed DOI PMC
Bardot E. S., Valdes V. J., Zhang J., Perdigoto C. N., Nicolis S., Hearn S. A., et al. (2013). Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells. EMBO J. 32, 1990–2000. 10.1038/emboj.2013.110 PubMed DOI PMC
Bellono N. W., Leitch D. B., Julius D. (2017). Molecular basis of ancestral vertebrate electroreception. Nature 543, 391–396. 10.1038/nature21401 PubMed DOI PMC
Bellono N. W., Leitch D. B., Julius D. (2018). Molecular tuning of electroreception in sharks and skates. Nature 558, 122–126. 10.1038/s41586-018-0160-9 PubMed DOI PMC
Bemis W. E., Grande L. (1992). Early development of the actinopterygian head. I. External development and staging of the paddlefish Polyodon spathula . J. Morphol. 213, 47–83. 10.1002/jmor.1052130106 PubMed DOI
Bennett M. V. L., Obara S. (1986). “Ionic mechanisms and pharmacology of electroreceptors,” in Electroreception. Editors Bullock T. H., Heiligenberg W. (New York: Wiley; ), 157–181.
Bertrand S., Thisse B., Tavares R., Sachs L., Chaumot A., Bardet P. L., et al. (2007). Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet. 3, e188. 10.1371/journal.pgen.0030188 PubMed DOI PMC
Bodznick D., Montgomery J. C. (2005). “The physiology of low-frequency electrosensory systems,” in Electroreception. Editors Bullock T. H., Hopkins C. D., Popper A. N., Fay R. R. (New York: Springer; ), 132–153. Available at: https://link.springer.com/chapter/10.1007/0-387-28275-0_6 . DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bonilla-Claudio M., Wang J., Bai Y., Klysik E., Selever J., Martin J. F. (2012). Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 139, 709–719. 10.1242/dev.073197 PubMed DOI PMC
Bosse A., Stoykova A., Nieselt-Struwe K., Chowdhury K., Copeland N. G., Jenkins N. A., et al. (2000). Identification of a novel mouse Iroquois homeobox gene, Irx5, and chromosomal localisation of all members of the mouse Iroquois gene family. Dev. Dyn. 218, 160–174. 10.1002/(SICI)1097-0177(200005)218:1<160::AID-DVDY14>3.0.CO;2-2 PubMed DOI
Brown T. L., Horton E. C., Craig E. W., Goo C. E. A., Black E. C., Hewitt M. N., et al. (2023). Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife 12, e85800. 10.7554/eLife.85800 PubMed DOI PMC
Butts T., Modrell M. S., Baker C. V. H., Wingate R. J. T. (2014). The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evol. Dev. 16, 92–100. 10.1111/ede.12067 PubMed DOI PMC
Buzzi A. L., Chen J., Thiery A., Delile J., Streit A. (2022). Sox8 remodels the cranial ectoderm to generate the ear. Proc. Natl. Acad. Sci. U.S.A. 119, e2118938119. 10.1073/pnas.2118938119 PubMed DOI PMC
Camacho S., Ostos M. D. V., Llorente J. I., Sanz A., García M., Domezain A., et al. (2007). Structural characteristics and development of ampullary organs in Acipenser naccarii . Anat. Rec. 290, 1178–1189. 10.1002/ar.20569 PubMed DOI
Capella-Gutiérrez S., Silla-Martínez J. M., Gabaldón T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. 10.1093/bioinformatics/btp348 PubMed DOI PMC
Caprara G. A., Peng A. W. (2022). Mechanotransduction in mammalian sensory hair cells. Mol. Cell. Neurosci. 120, 103706. 10.1016/j.mcn.2022.103706 PubMed DOI PMC
Cardeña-Núñez S., Sánchez-Guardado L. Ó., Corral-San-Miguel R., Rodríguez-Gallardo L., Marín F., Puelles L., et al. (2016). Expression patterns of Irx genes in the developing chick inner ear. Brain Struct. Funct. 222, 2071–2092. 10.1007/s00429-016-1326-6 PubMed DOI
Chagnaud B. P., Wilkens L. A., Hofmann M. (2021). “The ampullary electrosensory system—a paddlefish case study,” in The Senses: A Comprehensive Reference. Editor Fritzsch B. (Elsevier; ), 215–227. 10.1016/B978-0-12-809324-5.24210-7 DOI
Chen J., Wang W., Tian Z., Dong Y., Dong T., Zhu H., et al. (2018). Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus). Front. Genet. 9, 117. 10.3389/fgene.2018.00117 PubMed DOI PMC
Chen Y., Gu Y., Li Y., Li G. L., Chai R., Li W., et al. (2021). Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Rep. 35, 109016. 10.1016/j.celrep.2021.109016 PubMed DOI
Cheng C. W., Chow R. L., Lebel M., Sakuma R., Cheung H.O.-L., Thanabalasingham V., et al. (2005). The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev. Biol. 287, 48–60. 10.1016/j.ydbio.2005.08.029 PubMed DOI
Cheng P., Huang Y., Lv Y., Du H., Ruan Z., Li C., et al. (2021). The American paddlefish genome provides novel insights into chromosomal evolution and bone mineralization in early vertebrates. Mol. Biol. Evol. 38, 1595–1607. 10.1093/molbev/msaa326 PubMed DOI PMC
Crampton W. G. R. (2019). Electroreception, electrogenesis and electric signal evolution. J. Fish Biol. 95, 92–134. 10.1111/jfb.13922 PubMed DOI
Dabdoub A., Puligilla C., Jones J. M., Fritzsch B., Cheah K. S., Pevny L. H., et al. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. U.S.A. 105, 18396–18401. 10.1073/pnas.0808175105 PubMed DOI PMC
Deprez M., Zaragosi L. E., Truchi M., Becavin C., Ruiz García S., Arguel M. J., et al. (2020). A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202, 1636–1645. 10.1164/rccm.201911-2199OC PubMed DOI
Dettlaff T. A., Ginsburg A. S., Schmalhausen O. I. (1993). Sturgeon Fishes: Developmental Biology and Aquaculture. Berlin: Springer-Verlag. Available at: https://link.springer.com/book/10.1007/978-3-642-77057-9 . DOI
Dirksen M.-L., Jamrich M. (1995). Differential expression of fork head genes during early Xenopus and zebrafish development. Dev. Genet. 17, 107–116. 10.1002/dvg.1020170203 PubMed DOI
Du A., Hunter C. S., Murray J., Noble D., Cai C.-L., Evans S. M., et al. (2009). Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58, 2059–2069. 10.2337/db08-0987 PubMed DOI PMC
Du K., Stöck M., Kneitz S., Klopp C., Woltering J. M., Adolfi M. C., et al. (2020). The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841–852. 10.1038/s41559-020-1166-x PubMed DOI PMC
Dufourcq P., Roussigné M., Blader P., Rosa F., Peyrieras N., Vriz S. (2006). Mechano-sensory organ regeneration in adults: the zebrafish lateral line as a model. Mol. Cell. Neurosci. 33, 180–187. 10.1016/j.mcn.2006.07.005 PubMed DOI
Duggan C. D., Demaria S., Baudhuin A., Stafford D., Ngai J. (2008). Foxg1 is required for development of the vertebrate olfactory system. J. Neurosci. 28, 5229–5239. 10.1523/JNEUROSCI.1134-08.2008 PubMed DOI PMC
Dvorakova M., Macova I., Bohuslavova R., Anderova M., Fritzsch B., Pavlinkova G. (2020). Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev. Biol. 457, 43–56. 10.1016/j.ydbio.2019.09.003 PubMed DOI PMC
Dykes I. M., Tempest L., Lee S.-I., Turner E. E. (2011). Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. J. Neurosci. 31, 9789–9799. 10.1523/JNEUROSCI.0901-11.2011 PubMed DOI PMC
Eagleson G. W., Dempewolf R. D. (2002). The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis . Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132, 179–189. 10.1016/s1096-4959(01)00521-8 PubMed DOI
Elliott K. L., Fritzsch B. (2021). “Evolution and development of lateral line and electroreception: an integrated perception of neurons, hair cells and brainstem nuclei,” in The Senses: A Comprehensive Reference. Editor Fritzsch B. (Elsevier; ), 95–115. 10.1016/B978-0-12-809324-5.24170-9 DOI
Elliott K. L., Fritzsch B., Duncan J. S. (2018). Evolutionary and developmental biology provide insights into the regeneration of organ of Corti hair cells. Front. Cell. Neurosci. 12, 252. 10.3389/fncel.2018.00252 PubMed DOI PMC
England S. J., Cerda G. A., Kowalchuk A., Sorice T., Grieb G., Lewis K. E. (2020). Hmx3a has essential functions in zebrafish spinal cord, ear and lateral line development. Genetics 216, 1153–1185. 10.1534/genetics.120.303748 PubMed DOI PMC
Fauber B. P., Magnuson S. (2014). Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-γ (RORγ or RORc). J. Med. Chem. 57, 5871–5892. 10.1021/jm401901d PubMed DOI
Feng Y., Xu Q. (2010). Pivotal role of hmx2 and hmx3 in zebrafish inner ear and lateral line development. Dev. Biol. 339, 507–518. 10.1016/j.ydbio.2009.12.028 PubMed DOI
Filova I., Pysanenko K., Tavakoli M., Vochyanova S., Dvorakova M., Bohuslavova R., et al. (2022). ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc. Natl. Acad. Sci. U.S.A. 119, e2207433119. 10.1073/pnas.2207433119 PubMed DOI PMC
Freitas R., Zhang G., Albert J. S., Evans D. H., Cohn M. J. (2006). Developmental origin of shark electrosensory organs. Evol. Dev. 8, 74–80. 10.1111/j.1525-142X.2006.05076.x PubMed DOI
Gibbs M. A., Northcutt R. G. (2004a). Development of the lateral line system in the shovelnose sturgeon. Brain Behav. Evol. 64, 70–84. 10.1159/000079117 PubMed DOI
Gibbs M. A., Northcutt R. G. (2004b). Retinoic acid repatterns axolotl lateral line receptors. Int. J. Dev. Biol. 48, 63–66. 10.1387/ijdb.15005576 PubMed DOI
Gillis J. A., Modrell M. S., Northcutt R. G., Catania K. C., Luer C. A., Baker C. V. H. (2012). Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development 139, 3142–3146. 10.1242/dev.084046 PubMed DOI PMC
Gnedeva K., Hudspeth A. J. (2015). SoxC transcription factors are essential for the development of the inner ear. Proc. Natl. Acad. Sci. U.S.A. 112, 14066–14071. 10.1073/pnas.1517371112 PubMed DOI PMC
Gómez-Skarmeta J. L., Modolell J. (2002). Iroquois genes: genomic organization and function in vertebrate neural development. Curr. Opin. Genet. Dev. 12, 403–408. 10.1016/s0959-437x(02)00317-9 PubMed DOI
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Grant K. A., Raible D. W., Piotrowski T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron 45, 69–80. 10.1016/j.neuron.2004.12.020 PubMed DOI
Haber A. L., Biton M., Rogel N., Herbst R. H., Shekhar K., Smillie C., et al. (2017). A single-cell survey of the small intestinal epithelium. Nature 551, 333–339. 10.1038/nature24489 PubMed DOI PMC
He Y., Lu X., Qian F., Liu D., Chai R., Li H. (2017). Insm1a is required for zebrafish posterior lateral line development. Front. Mol. Neurosci. 10, 241. 10.3389/fnmol.2017.00241 PubMed DOI PMC
Hesse K., Vaupel K., Kurt S., Buettner R., Kirfel J., Moser M. (2011). AP-2δ is a crucial transcriptional regulator of the posterior midbrain. PLoS ONE 6, e23483. 10.1371/journal.pone.0023483 PubMed DOI PMC
Hoffman B. U., Baba Y., Griffith T. N., Mosharov E. V., Woo S. H., Roybal D. D., et al. (2018). Merkel cells activate sensory neural pathways through adrenergic synapses. Neuron 100, 1401–1413. 10.1016/j.neuron.2018.10.034 PubMed DOI PMC
Houweling A. C., Dildrop R., Peters T., Mummenhoff J., Moorman A. F. M., Rüther U., et al. (2001). Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech. Dev. 107, 169–174. 10.1016/s0925-4773(01)00451-8 PubMed DOI
Hu X., Wang Y., Hao L.-Y., Liu X., Lesch C. A., Sanchez B. M., et al. (2015). Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol. 11, 141–147. 10.1038/nchembio.1714 PubMed DOI
Huang M., Sage C., Li H., Xiang M., Heller S., Chen Z.-Y. (2008). Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development. Dev. Dyn. 237, 3305–3312. 10.1002/dvdy.21735 PubMed DOI PMC
Huang X., Chen Q., Luo W., Pakvasa M., Zhang Y., Zheng L., et al. (2022). SATB2: a versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis. 9, 95–107. 10.1016/j.gendis.2020.10.003 PubMed DOI PMC
Hwang C. H., Simeone A., Lai E., Wu D. K. (2009). Foxg1 is required for proper separation and formation of sensory cristae during inner ear development. Dev. Dyn. 238, 2725–2734. 10.1002/dvdy.22111 PubMed DOI
Jan T. A., Eltawil Y., Ling A. H., Chen L., Ellwanger D. C., Heller S., et al. (2021). Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Rep. 36, 109358. 10.1016/j.celrep.2021.109358 PubMed DOI PMC
Jen H.-I., Singh S., Tao L., Maunsell H. R., Segil N., Groves A. K. (2022). GFI1 regulates hair cell differentiation by acting as an off-DNA transcriptional co-activator of ATOH1, and a DNA-binding repressor. Sci. Rep. 12, 7793. 10.1038/s41598-022-11931-0 PubMed DOI PMC
Jessen K. R., Mirsky R. (2019). Schwann cell precursors; multipotent glial cells in embryonic nerves. Front. Mol. Neurosci. 12, 69. 10.3389/fnmol.2019.00069 PubMed DOI PMC
Jørgensen J. M. (2005). “Morphology of electroreceptive sensory organs,” in Electroreception. Editors Bullock T. H., Hopkins C. D., Popper A. N., Fay R. R. (New York: Springer; ), 47–67. Available at: https://link.springer.com/chapter/10.1007/0-387-28275-0_3 . DOI
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kawauchi S., Santos R., Kim J., Hollenbeck P. L. W., Murray R. C., Calof A. L. (2009). The role of Foxg1 in the development of neural stem cells of the olfactory epithelium. Ann. N. Y. Acad. Sci. 1170, 21–27. 10.1111/j.1749-6632.2009.04372.x PubMed DOI PMC
Kelsh R. N., Eisen J. S. (2000). The zebrafish colourless gene regulates development of non-ectomesenchymal neural crest derivatives. Development 127, 515–525. 10.1242/dev.127.3.515 PubMed DOI
Kennedy M. W., Chalamalasetty R. B., Thomas S., Garriock R. J., Jailwala P., Yamaguchi T. P. (2016). Sp5 and Sp8 recruit β-catenin and Tcf1-Lef1 to select enhancers to activate Wnt target gene transcription. Proc. Natl. Acad. Sci. U.S.A. 113, 3545–3550. 10.1073/pnas.1519994113 PubMed DOI PMC
Kiernan A. E., Pelling A. L., Leung K. K., Tang A. S., Bell D. M., Tease C., et al. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434, 1031–1035. 10.1038/nature03487 PubMed DOI
Kotas M. E., O’Leary C. E., Locksley R. M. (2023). Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18, 311–335. 10.1146/annurev-pathol-042320-112212 PubMed DOI PMC
Koth M. L., Garcia-Moreno S. A., Novak A., Holthusen K. A., Kothandapani A., Jiang K., et al. (2020). Canonical Wnt/β-catenin activity and differential epigenetic marks direct sexually dimorphic regulation of Irx3 and Irx5 in developing mouse gonads. Development 147, dev183814. 10.1242/dev.183814 PubMed DOI PMC
Kotkamp K., Mössner R., Allen A., Onichtchouk D., Driever W. (2014). A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Dev. Biol. 385, 433–447. 10.1016/j.ydbio.2013.10.025 PubMed DOI
Ladurner A., Schwarz P. F., Dirsch V. M. (2021). Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat. Prod. Rep. 38, 757–781. 10.1039/d0np00047g PubMed DOI
Lecaudey V., Anselme I., Dildrop R., Rüther U., Schneider-Maunoury S. (2005). Expression of the zebrafish Iroquois genes during early nervous system formation and patterning. J. Comp. Neurol. 492, 289–302. 10.1002/cne.20765 PubMed DOI
Leitch D. B., Julius D. (2019). “Electrosensory transduction: comparisons across structure, afferent response properties, and cellular physiology,” in Electroreception: Fundamental Insights from Comparative Approaches. Editors Carlson B. A., Sisneros J. A., Popper A. N., Fay R. R. (Cham: Springer; ), 63–90. Available at: https://link.springer.com/chapter/10.1007/978-3-030-29105-1_3 . DOI
Lesko M. H., Driskell R. R., Kretzschmar K., Goldie S. J., Watt F. M. (2013). Sox2 modulates the function of two distinct cell lineages in mouse skin. Dev. Biol. 382, 15–26. 10.1016/j.ydbio.2013.08.004 PubMed DOI PMC
Li X., Gaillard F., Monckton E. A., Glubrecht D. D., Persad A. R., Moser M., et al. (2016). Loss of AP-2delta reduces retinal ganglion cell numbers and axonal projections to the superior colliculus. Mol. Brain 9, 62. 10.1186/s13041-016-0244-0 PubMed DOI PMC
Liang J., Chirikjian M., Pajvani U. B., Bartolomé A. (2022). MafA regulation in β-cells: from transcriptional to post-translational mechanisms. Biomolecules 12, 535. 10.3390/biom12040535 PubMed DOI PMC
López-Schier H., Hudspeth A. J. (2005). Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proc. Natl. Acad. Sci. U.S.A. 102, 1496–1501. 10.1073/pnas.0409361102 PubMed DOI PMC
Lorenzen S. M., Duggan A., Osipovich A. B., Magnuson M. A., García-Añoveros J. (2015). Insm1 promotes neurogenic proliferation in delaminated otic progenitors. Mech. Dev. 138 Pt 3, 233–245. 10.1016/j.mod.2015.11.001 PubMed DOI PMC
Lu X., Sipe C. W. (2016). Developmental regulation of planar cell polarity and hair-bundle morphogenesis in auditory hair cells: lessons from human and mouse genetics. WIREs Dev. Biol. 5, 85–101. 10.1002/wdev.202 PubMed DOI PMC
Lush M. E., Diaz D. C., Koenecke N., Baek S., Boldt H., St Peter M. K., et al. (2019). scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLife 8, e44431. 10.7554/eLife.44431 PubMed DOI PMC
Mak A. C. Y., Szeto I. Y. Y., Fritzsch B., Cheah K. S. E. (2009). Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expr. Patterns 9, 444–453. 10.1016/j.gep.2009.04.003 PubMed DOI PMC
Martik M. L., Gandhi S., Uy B. R., Gillis J. A., Green S. A., Simoes-Costa M., et al. (2019). Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678. 10.1038/s41586-019-1691-4 PubMed DOI PMC
Matern M. S., Milon B., Lipford E. L., McMurray M., Ogawa Y., Tkaczuk A., et al. (2020). GFI1 functions to repress neuronal gene expression in the developing inner ear hair cells. Development 147, dev186015. 10.1242/dev.186015 PubMed DOI PMC
McGinnis S., Madden T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20–W25. 10.1093/nar/gkh435 PubMed DOI PMC
McGovern M. M., Hosamani I. V., Niu Y., Nguyen K. Y., Zong C., Groves A. K. (2024). Expression of Atoh1, Gfi1, and Pou4f3 in the mature cochlea reprograms nonsensory cells into hair cells. Proc. Natl. Acad. Sci. U.S.A. 121, e2304680121. 10.1073/pnas.2304680121 PubMed DOI PMC
Meijer F. A., Doveston R. G., de Vries R. M. J. M., Vos G. M., Vos A. A. A., Leysen S., et al. (2020). Ligand-based design of allosteric retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists. J. Med. Chem. 63, 241–259. 10.1021/acs.jmedchem.9b01372 PubMed DOI PMC
Metscher B. D., Müller G. B. (2011). MicroCT for molecular imaging: quantitative visualization of complete three-dimensional distributions of gene products in embryonic limbs. Dev. Dyn. 240, 2301–2308. 10.1002/dvdy.22733 PubMed DOI
Miller S. R., Perera S. N., Baker C. V. H. (2017). Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo . Biol. Open 6, 317–325. 10.1242/bio.023887 PubMed DOI PMC
Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., von Haeseler A., et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC
Modrell M. S., Baker C. V. H. (2012). Evolution of electrosensory ampullary organs: conservation of Eya4 expression during lateral line development in jawed vertebrates. Evol. Dev. 14, 277–285. 10.1111/j.1525-142X.2012.00544.x PubMed DOI PMC
Modrell M. S., Bemis W. E., Northcutt R. G., Davis M. C., Baker C. V. H. (2011a). Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nat. Commun. 2, 496. 10.1038/ncomms1502 PubMed DOI PMC
Modrell M. S., Buckley D., Baker C. V. H. (2011b). Molecular analysis of neurogenic placode development in a basal ray-finned fish. genesis 49, 278–294. 10.1002/dvg.20707 PubMed DOI PMC
Modrell M. S., Lyne M., Carr A. R., Zakon H. H., Buckley D., Campbell A. S., et al. (2017a). Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife 6, e24197. 10.7554/eLife.24197 PubMed DOI PMC
Modrell M. S., Tidswell O. R. A., Baker C. V. H. (2017b). Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Dev. Biol. 431, 48–58. 10.1016/j.ydbio.2017.08.017 PubMed DOI PMC
Mogdans J. (2019). Sensory ecology of the fish lateral-line system: morphological and physiological adaptations for the perception of hydrodynamic stimuli. J. Fish Biol. 95, 53–72. 10.1111/jfb.13966 PubMed DOI
Moser T., Grabner C. P., Schmitz F. (2020). Sensory processing at ribbon synapses in the retina and the cochlea. Physiol. Rev. 100, 103–144. 10.1152/physrev.00026.2018 PubMed DOI
Norris H. W., Hughes S. P. (1920). The spiracular sense-organ in elasmobranchs, ganoids and dipnoans. Anat. Rec. 18, 205–209. 10.1002/ar.1090180210 DOI
Northcutt R. G. (1997). Evolution of gnathostome lateral line ontogenies. Brain Behav. Evol. 50, 25–37. 10.1159/000113319 PubMed DOI
Northcutt R. G., Brändle K., Fritzsch B. (1995). Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. Dev. Biol. 168, 358–373. 10.1006/dbio.1995.1086 PubMed DOI
Northcutt R. G., Catania K. C., Criley B. B. (1994). Development of lateral line organs in the axolotl. J. Comp. Neurol. 340, 480–514. 10.1002/cne.903400404 PubMed DOI
O’Donnell M., Hong C.-S., Huang X., Delnicki R. J., Saint-Jeannet J.-P. (2006). Functional analysis of Sox8 during neural crest development in Xenopus . Development 133, 3817–3826. 10.1242/dev.02558 PubMed DOI
Ó Maoiléidigh D., Ricci A. J. (2019). A bundle of mechanisms: inner-ear hair-cell mechanotransduction. Trends Neurosci. 42, 221–236. 10.1016/j.tins.2018.12.006 PubMed DOI PMC
O’Neill P., McCole R. B., Baker C. V. H. (2007). A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula . Dev. Biol. 304, 156–181. 10.1016/j.ydbio.2006.12.029 PubMed DOI PMC
Pangrsic T., Singer J. H., Koschak A. (2018). Voltage-gated calcium channels: key players in sensory coding in the retina and the inner ear. Physiol. Rev. 98, 2063–2096. 10.1152/physrev.00030.2017 PubMed DOI PMC
Papalopulu N., Kintner C. (1996). A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, 3409–3418. 10.1242/dev.122.11.3409 PubMed DOI
Pauley S., Lai E., Fritzsch B. (2006). Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev. Dyn. 235, 2470–2482. 10.1002/dvdy.20839 PubMed DOI PMC
Perdigoto C. N., Bardot E. S., Valdes V. J., Santoriello F. J., Ezhkova E. (2014). Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network. Development 141, 4690–4696. 10.1242/dev.112169 PubMed DOI PMC
Piotrowski T., Baker C. V. H. (2014). The development of lateral line placodes: taking a broader view. Dev. Biol. 389, 68–81. 10.1016/j.ydbio.2014.02.016 PubMed DOI
Radde-Gallwitz K., Pan L., Gan L., Lin X., Segil N., Chen P. (2004). Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J. Comp. Neurol. 477, 412–421. 10.1002/cne.20257 PubMed DOI PMC
Reilly M. B., Cros C., Varol E., Yemini E., Hobert O. (2020). Unique homeobox codes delineate all the neuron classes of C. elegans . Nature 584, 595–601. 10.1038/s41586-020-2618-9 PubMed DOI PMC
Romero-Carvajal A., Navajas Acedo J., Jiang L., Kozlovskaja-Gumbriene A., Alexander R., Li H., et al. (2015). Regeneration of sensory hair cells requires localized interactions between the Notch and Wnt pathways. Dev. Cell 34, 267–282. 10.1016/j.devcel.2015.05.025 PubMed DOI PMC
Saito T., Psenicka M. (2015). Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol. Reprod. 93, 96. 10.1095/biolreprod.115.128314 PubMed DOI
Sapède D., Gompel N., Dambly-Chaudière C., Ghysen A. (2002). Cell migration in the postembryonic development of the fish lateral line. Development 129, 605–615. 10.1242/dev.129.3.605 PubMed DOI
Schulz M. H., Zerbino D. R., Vingron M., Birney E. (2012). Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092. 10.1093/bioinformatics/bts094 PubMed DOI PMC
Stehlin-Gaon C., Willmann D., Zeyer D., Sanglier S., Van Dorsselaer A., Renaud J.-P., et al. (2003). All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat. Struct. Biol. 10, 820–825. 10.1038/nsb979 PubMed DOI
Stöver B. C., Müller K. F. (2010). TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7. 10.1186/1471-2105-11-7 PubMed DOI PMC
Stundl J., Pospisilova A., Matějková T., Psenicka M., Bronner M. E., Cerny R. (2020). Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev. Biol. 467, 14–29. 10.1016/j.ydbio.2020.08.007 PubMed DOI PMC
Stundl J., Soukup V., Franěk R., Pospisilova A., Psutkova V., Pšenička M., et al. (2022). Efficient CRISPR mutagenesis in sturgeon demonstrates its utility in large, slow-maturing vertebrates. Front. Cell Dev. Biol. 10, 750833. 10.3389/fcell.2022.750833 PubMed DOI PMC
Stundl J., Martik M. L., Chen D., Raja D. A., Franěk R., Pospisilova A., et al. (2023). Ancient vertebrate dermal armor evolved from trunk neural crest. Proc. Natl. Acad. Sci. U.S.A. 120, e2221120120. 10.1073/pnas.2221120120 PubMed DOI PMC
Sun Y., Dykes I. M., Liang X., Eng S. R., Evans S. M., Turner E. E. (2008). A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 11, 1283–1293. 10.1038/nn.2209 PubMed DOI PMC
Sun Y., Liu Z. (2023). Recent advances in molecular studies on cochlear development and regeneration. Curr. Opin. Neurobiol. 81, 102745. 10.1016/j.conb.2023.102745 PubMed DOI
Tasdemir-Yilmaz O. E., Druckenbrod N. R., Olukoya O. O., Dong W., Yung A. R., Bastille I., et al. (2021). Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Dev. Cell 56, 2516–2535.e8. 10.1016/j.devcel.2021.08.005 PubMed DOI PMC
Toresson H., Martinez-Barbera J. P., Bardsley A., Caubit X., Krauss S. (1998). Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Dev. Genes Evol. 208, 431–439. 10.1007/s004270050200 PubMed DOI
Undurraga C. A., Gou Y., Sandoval P. C., Nuñez V. A., Allende M. L., Riley B. B., et al. (2019). Sox2 and Sox3 are essential for development and regeneration of the zebrafish lateral line. bioRxiv 856088. 10.1101/856088 DOI
Vidal B., Gulez B., Cao W. X., Leyva-Díaz E., Reilly M. B., Tekieli T., et al. (2022). The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34 . eLife 11, e76003. 10.7554/eLife.76003 PubMed DOI PMC
votn Bartheld C. S., Giannessi F. (2011). The paratympanic organ: a barometer and altimeter in the middle ear of birds? J. Exp. Zool. B Mol. Dev. Evol. 316, 402–408. 10.1002/jez.b.21422 PubMed DOI PMC
Wang J., Lu C., Zhao Y., Tang Z., Song J., Fan C. (2020). Transcriptome profiles of sturgeon lateral line electroreceptor and mechanoreceptor during regeneration. BMC Genomics 21, 875. 10.1186/s12864-020-07293-4 PubMed DOI PMC
Wang X., Llamas J., Trecek T., Shi T., Tao L., Makmura W., et al. (2023). SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Proc. Natl. Acad. Sci. U.S.A. 120, e2301301120. 10.1073/pnas.2301301120 PubMed DOI PMC
Webb J. F. (2021). “Morphology of the mechanosensory lateral line system of fishes,” in The Senses: A Comprehensive Reference. Editor Fritzsch B. (Elsevier; ), 29–46. 10.1016/B978-0-12-809324-5.24162-X DOI
Wiwatpanit T., Lorenzen S. M., Cantú J. A., Foo C. Z., Hogan A. K., Márquez F., et al. (2018). Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 563, 691–695. 10.1038/s41586-018-0570-8 PubMed DOI PMC
Wullimann M. F., Grothe B. (2014). “The central nervous organization of the lateral line system,” in The Lateral Line System. Editors Coombs S. C., Bleckmann H., Fay R. R., Popper A. N. (New York: Springer; ), 195–251. Available at: https://link.springer.com/chapter/10.1007/2506_2013_18 . DOI
Xu J., Li J., Zhang T., Jiang H., Ramakrishnan A., Fritzsch B., et al. (2021). Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc. Natl. Acad. Sci. U.S.A. 118, e2025196118. 10.1073/pnas.2025196118 PubMed DOI PMC
Yamashita T., Zheng F., Finkelstein D., Kellard Z., Robert C., Rosencrance C. D., et al. (2018). High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor. PLoS Genet. 14, e1007552. 10.1371/journal.pgen.1007552 PubMed DOI PMC
Zeiske E., Kasumyan A., Bartsch P., Hansen A. (2003). Early development of the olfactory organ in sturgeons of the genus Acipenser: a comparative and electron microscopic study. Anat. Embryol. 206, 357–372. 10.1007/s00429-003-0309-6 PubMed DOI
Zerbino D. R., Birney E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829. 10.1101/gr.074492.107 PubMed DOI PMC
Zhang S., Zhang Y., Dong Y., Guo L., Zhang Z., Shao B., et al. (2019). Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell. Mol. Life Sci. 77, 1401–1419. 10.1007/s00018-019-03291-2 PubMed DOI PMC
Zhang Y., Zhang S., Zhang Z., Dong Y., Ma X., Qiang R., et al. (2020). Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging (Albany NY) 12, 19834–19851. 10.18632/aging.104009 PubMed DOI PMC
Zhao X.-F., Suh C. S., Prat C. R., Ellingsen S., Fjose A. (2009). Distinct expression of two foxg1 paralogues in zebrafish. Gene Expr. Patterns 9, 266–272. 10.1016/j.gep.2009.04.001 PubMed DOI
Zine A., Fritzsch B. (2023). Early steps towards hearing: placodes and sensory development. Int. J. Mol. Sci. 24, 6994. 10.3390/ijms24086994 PubMed DOI PMC