Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
(LM2018099); (CZ.02.1.01/0.0/0.0/16_025/0007370); (17-19714Y) and 642893
The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic -project CENAKVA (LM2018099) and Biodiversity (CZ.02.1.01/0.0/0.0/16_025/0007370) and the Czech Science Foundation (grant number 17-19714Y), by the Eu
PubMed
30999629
PubMed Central
PMC6523263
DOI
10.3390/ani9040174
PII: ani9040174
Knihovny.cz E-resources
- Keywords
- Acipenser, PGCs, caviar, conservation, genome editing, morpholino oligonucleotide,
- Publication type
- Journal Article MeSH
Sturgeons also known as living fossils are facing threats to their survival due to overfishing and interference in natural habitats. Sterlet (Acipenser ruthenus) due to its rapid reproductive cycle and small body size can be used as a sterile host for surrogate production for late maturing and large sturgeon species. Dead end protein (dnd1) is essential for migration of Primordial Germ Cells (PGCs), the origin of all germ cells in developing embryos. Knockout or knockdown of dnd1 can be done in order to mismigrate PGCs. Previously we have used MO and UV for the aforementioned purpose, and in our present study we have used CRISPR/Cas9 technology to knockout dnd1. No or a smaller number of PGCs were detected in crispants, and we also observed malformations in some CRISPR/Cas9 injected embryos. Furthermore, we compared three established methods to achieve sterility in sterlet, and we found higher embryo survival and hatching rates in CRISPR/Cas9, UV and MO, respectively.
See more in PubMed
Bemis W.E., Kynard B. Sturgeon rivers: An introduction to acipenseriform biogeography and life history. Environ. Biol. Fish. 1997:167–183. doi: 10.1023/A:1007312524792. DOI
Pikitch E.K., Doukakis P., Laucks L., Chakrabarty P., Erickson D.L. Status, trends and management of sturgeon and paddlefish fisheries. Fish. Fish. 2005;6:233–265. doi: 10.1111/j.1467-2979.2005.00190.x. DOI
Billard R., Guillaume L. Biology and conservation of sturgeon and paddlefish. Rev. Fish. Biol. Fish. 2001;1:355–392.
Ludwig A., Belfiore N.M., Pitra C., Svirsky V., Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. PubMed PMC
Zhang H., Wei Q.W., Kyanrd B.E., Du H., Yang D.G., Chen X.H. Spatial structure and bottom characteristics of the only remaining spawning area of Chinese sturgeon in the Yangtze River. J. Appl. Ichthyol. 2011;27:251–256. doi: 10.1111/j.1439-0426.2011.01708.x. DOI
Hildebrand L., McLeod C., McKenzie S. Status and management of white sturgeon in the Columbia River in British Columbia, Canada: An overview. J. Appl. Ichthyol. 1999;15:164–172. doi: 10.1111/j.1439-0426.1999.tb00227.x. DOI
Dettlaff T.A., Ginsburg A.S., Schmalhausen O.I. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer-Verlag; New York, NY, USA: 1993.
Saito T., Goto-Kazeto R., Arai K., Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol. Reprod. 2008;78:159–166. doi: 10.1095/biolreprod.107.060038. PubMed DOI
Morita T., Morishima K., Miwa M., Kumakura N., Kudo S., Ichida K., Mitsuboshi T., Takeuchi Y., Yoshizaki G. Functional sperm of the yellowtail (Seriola quinqueradiata) were produced in the small-bodied surrogate, jack mackerel (Trachurus japonicus) Mar. Biotechnol. 2015;17:644–654. doi: 10.1007/s10126-015-9657-5. PubMed DOI
Yoshizaki G., Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res. 2018;29:103–110. doi: 10.1016/j.scr.2018.03.015. PubMed DOI
Lujić J., Marinović Z., Bajec S.S., Djurdjevič I., Urbányi B., Horváth Á. Interspecific germ cell transplantation: A new light in the conservation of valuable Balkan trout genetic resources? Fish. Physiol. Biochem. 2018;44:1487–1498. doi: 10.1007/s10695-018-0510-4. PubMed DOI
Yazawa R., Takeuchi Y., Morita T., Ishida M., Yoshizaki G. The Pacific bluefin tuna (Thunnus orientalis) dead end gene is suitable as a specific molecular marker of type A spermatogonia. Mol. Reprod. Dev. 2013;80:871–880. doi: 10.1002/mrd.22224. PubMed DOI
Yazawa R., Takeuchi Y., Higuchi K., Yatabe T., Kabeya N., Yoshizaki G. Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol. Reprod. 2010;82:896–904. doi: 10.1095/biolreprod.109.081281. PubMed DOI
Pšenička M., Saito T., Linhartová Z., Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83:1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI
Higuchi K., Takeuchi Y., Miwa M., Yamamoto Y., Tsunemoto K., Yoshizaki G. Colonization, proliferation, and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient. Fish. Sci. 2011;77:69–77. doi: 10.1007/s12562-010-0314-7. DOI
Pacchiarini T., Sarasquete C., Cabrita E. Development of interspecies testicular germ-cell transplantation in flatfish. Reprod. Fertil. Dev. 2014;26:690–702. doi: 10.1071/RD13103. PubMed DOI
Bar I., Smith A., Bubner E., Yoshizaki G., Takeuchi Y., Yazawa R., Chen B.N., Cummins S., Elizur A. Assessment of yellowtail kingfish (Seriola lalandi) as a surrogate host for the production of southern bluefin tuna (Thunnus maccoyii) seed via spermatogonial germ cell transplantation. Reprod. Fertil. Dev. 2015;28:2051–2064. doi: 10.1071/RD15136. PubMed DOI
Hamasaki M., Takeuchi Y., Yazawa R., Yoshikawa S., Kadomura K., Yamada T., Miyaki K., Kikuchi K., Yoshizaki G. Production of tiger puffer Takifugu rubripes offspring from triploid grass puffer Takifugu niphobles parents. Mar. Biotechnol. 2017;19:579–591. doi: 10.1007/s10126-017-9777-1. PubMed DOI
Okutsu T., Shikina S., Kanno M., Takeuchi Y., Yoshizaki G. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517. doi: 10.1126/science.1145626. PubMed DOI
Havelka M. Ph.D. Thesis. University of South Bohemia in Ceské Budejovice, Faculty of Fisheries and Protection of Waters; České Budějovice, Czech Republic: 2013. Molecular Aspects of Interspecific Hybridization of Sturgeons Related to Polyploidy and In Situ Conservation.
Kurokawa H., Saito D., Nakamura S., Katoh-Fukui Y., Ohta K., Baba T., Morohashi K.-I., Tanaka M. Germ cells are essential for sexual dimorphism in the medaka gonad. Proc. Natl. Acad. Sci. USA. 2007;104:16958–16963. doi: 10.1073/pnas.0609932104. PubMed DOI PMC
Fujimoto T., Nishimura T., Goto-Kazeto R., Kawakami Y., Yamaha E., Arai K. Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish. Proc. Natl. Acad. Sci. USA. 2010;107:17211–17216. doi: 10.1073/pnas.1007032107. PubMed DOI PMC
Goto R., Saito T., Takeda T., Fujimoto T., Takagi M., Arai K., Yamaha E. Germ cells are not the primary factor for sexual fate determination in goldfish. Dev. Biol. 2012;370:98–109. doi: 10.1016/j.ydbio.2012.07.010. PubMed DOI
Linhartová Z., Saito T., Kaspar V., Rodina M., Praskova E., Hagihara S., Pšenička M. Sterilization of sterlet Acipenser ruthenus by using knock-down agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology. 2015;84:1246–1255. doi: 10.1016/j.theriogenology.2015.07.003. PubMed DOI
Kedde M., Strasser M.J., Boldajipour B., Oude Vrielink J.A., Slanchev K., le Sage C., Nagel R., Voorhoeve P.M., van Duijse J., Ørom U.A., et al. RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA. Cell. 2007;131:1273–1286. doi: 10.1016/j.cell.2007.11.034. PubMed DOI
Baloch A.R., Franěk R., Saito T., Pšenička M. Dead-end (DND) protein in fish-a review. Fish. Physiol. Biochem. 2019 doi: 10.1007/s10695-018-0606-x. PubMed DOI
Youngren K.K., Coveney D., Peng X., Bhattacharya C., Schmidt L.S., Nickerson M.L., Lamb B.T., Deng J.M., Behringer R.R., Capel B., et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature. 2005;435:360. doi: 10.1038/nature03595. PubMed DOI PMC
Schier F. The maternal-zygotic transition: Death and birth of RNAs. Science. 2007;316:406–407. doi: 10.1126/science.1140693. PubMed DOI
Houwing S., Kamminga L.M., Berezikov E., Cronembold D., Girard A., van den Elst H., Filippov D.V., Blaser H., Raz E., Moens C.B., et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007;129:69–82. doi: 10.1016/j.cell.2007.03.026. PubMed DOI
Houwing S., Berezikov E., Ketting R.F. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J. 2008;27:2702–2711. doi: 10.1038/emboj.2008.204. PubMed DOI PMC
Hartung O., Forbes M.M., Marlow F.L. Zebrafish vasa is required for germ-cell differentiation and maintenance. Mol. Reprod. Dev. 2014;81:946–961. doi: 10.1002/mrd.22414. PubMed DOI PMC
Weidinger G., Stebler J., Slanchev K., Dumstrei K., Wise C., Lovell-Badge R., Thisse C., Thisse B., Raz E. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 2003;13:1429–1434. doi: 10.1016/S0960-9822(03)00537-2. PubMed DOI
Wargelius A., Leininger S., Skaftnesmo K.O., Kleppe L., Andersson E., Taranger G.L., Schulz R.W., Edvardsen R.B. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci. Rep. 2016;6:21284. doi: 10.1038/srep21284. PubMed DOI PMC
Li M., Yang H., Zhao J., Fang L., Shi H., Li M., Sun Y., Zhang X., Jiang D., Zhou L., et al. Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9. Genetics. 2004;197:591–599. doi: 10.1534/genetics.114.163667. PubMed DOI PMC
Slanchev K., Stebler J., de la Cueva-Mendez G., Raz E. Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proc. Natl. Acad. Sci. USA. 2005;102:4074–4079. doi: 10.1073/pnas.0407475102. PubMed DOI PMC
Hsu P.D., Lander E.E., Zhang F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell. 2014;157:1262–1278. doi: 10.1016/j.cell.2014.05.010. PubMed DOI PMC
Blitz I.L., Biesinger J., Xie X., Cho K.W.Y. Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis. 2013;51:827–834. doi: 10.1002/dvg.22719. PubMed DOI PMC
Nakayama T., Blitz I.L., Fish M.B., Odeleye A.O., Manohar S., Cho K.W., Grainger R.M. Cas9-Based Genome Editing in Xenopus tropicalis. Methods Enzymol. 2014;546:355–375. PubMed PMC
Saito T., Guralp H., Iegorova V., Rodina M., Pšenička M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol. Reprod. 2018;99:556–564. doi: 10.1093/biolre/ioy076. PubMed DOI PMC
Saito T., Pšenička M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso) Biol. Reprod. 2015;115:128314. doi: 10.1095/biolreprod.115.128314. PubMed DOI
Gagnon J.A., Valen E., Thyme S.B., Huang P., Akhmetova L., Pauli A., Montague T.G., Zimmerman S., Richter C., Schier A.F. Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs. PLoS ONE. 2014;9:e106396. doi: 10.1371/journal.pone.0098186. PubMed DOI PMC
Naert T., Colpaert R., Van Nieuwenhuysen T., Dimitrakopoulou D., Leoen J., Haustraete J., Boel A., Steyaert W., Lepez T., Deforce D., et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci. Rep. 2016;6:35264. doi: 10.1038/srep35264. PubMed DOI PMC
Saito T., Pšenička M., Goto R., Inoue K., Adachi S., Arai K., Yamaha E. The origin and migration of primordial germ cells in sturgeons. PLoS ONE. 2014;9:e86861. doi: 10.1371/journal.pone.0086861. PubMed DOI PMC
Ota S., Hisano Y., Muraki M., Hoshijima K., Dahlem T.J., Grunwald D.J., Okada Y., Kawahara A. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells. 2013;18:450–458. doi: 10.1111/gtc.12050. PubMed DOI PMC
Ota S., Taimatsu K., Yanagi K., Namiki T., Ohga R., Higashijima S., Kawahara A. Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci. Rep. 2016;6:34991. doi: 10.1038/srep34991. PubMed DOI PMC
Sakane Y., Iida M., Hasebe T., Fujii S., Buchholz D.R., Ishizuya-Oka A., Yamamoto T., Suzuki K.T. Functional analysis of thyroid hormone receptor beta in Xenopus tropicalis founders using CRISPR-Cas. Biol. Open. 2018;7:bio030338. doi: 10.1242/bio.030338. PubMed DOI PMC
Shigeta M., Sakane Y., Iida M., Suzuki M., Kashiwagi K., Kashiwagi A., Fujii S., Yamamoto T., Suzuki K.T. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders. Genes Cells. 2016;21:755–771. doi: 10.1111/gtc.12379. PubMed DOI
Radev Z., Hermel J.-M., Elipot Y., Bretaud S., Arnould S., Duchateau P., Ruggiero F., Joly J.S., Sohm F. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS ONE. 2015;7:e0133986. doi: 10.1371/journal.pone.0133986. PubMed DOI PMC
Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.L., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:686–688. doi: 10.1038/nbt.2650. PubMed DOI
Jung J.H., Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploidy sugarcane improves cell wall composition for production of bioethanol. Plant Mol. Biol. 2016;92:131–142. doi: 10.1007/s11103-016-0499-y. PubMed DOI PMC
Aznar-Moreno J.A., Durrett T.P. Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol. 2017;58:1260–1267. doi: 10.1093/pcp/pcx058. PubMed DOI
Jao L.E., Wente S.R., Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA. 2013;110:13904–13909. doi: 10.1073/pnas.1308335110. PubMed DOI PMC
Chen J., Wang W., Tian Z., Dong Y., Dong T., Zhu H., Zhu Z., Hu H., Hu W. Efficient Gene Transfer and Gene Editing in Sterlet (Acipenser ruthenus) Front. Genet. 2018;9:117. doi: 10.3389/fgene.2018.00117. PubMed DOI PMC
Tonelli F.M.P., Lacerda S.M.S.N., Tonelli F.C.P., Costa G.M.J., de França L.R., Resende R.R. Progress and biotechnological prospects in fish transgenesis. Biotechnol. Adv. 2017;35:832–844. doi: 10.1016/j.biotechadv.2017.06.002. PubMed DOI
Saito T., Otani S., Fujimoto T., Suzuki T., Nakatsuji T., Arai K., Yamaha E. The germ line lineage in ukigori, Gymnogobius species (Teleostei: Gobiidae) during embryonic development. Int. J. Dev. Biol. 2004;48:1079–1085. doi: 10.1387/ijdb.041912ts. PubMed DOI
Fujimoto T., Kataoka T., Sakao S., Saito T., Yamaha E., Arai K. Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus) Zool. Sci. 2006;23:977–989. doi: 10.2108/zsj.23.977. PubMed DOI
Havelka M., Kaspar V., Hulak M., Flajshans M. Sturgeon genetics and cytogenetics: A review related to ploidy levels and interspecific hybridization. Folia Zool. 2011;60:93–103. doi: 10.25225/fozo.v60.i2.a3.2011. DOI
Pšenička M., Saito T., Rodina M., Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72:119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI
Characterization of potential spermatogonia biomarker genes in the European eel (Anguilla anguilla)
Delivery of Iron Oxide Nanoparticles into Primordial Germ Cells in Sturgeon