The origin and migration of primordial germ cells in sturgeons
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24505272
PubMed Central
PMC3914811
DOI
10.1371/journal.pone.0086861
PII: PONE-D-13-34372
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- embryo nesavčí cytologie embryologie MeSH
- embryonální vývoj fyziologie MeSH
- pohyb buněk fyziologie MeSH
- ryby embryologie MeSH
- zárodečné buňky cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts.
Department of Biology Faculty of Science Kobe University Kobe Japan
Laboratory of Aquaculture Biology Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
Zobrazit více v PubMed
Grande L, Bemis WE (1991) Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes. Journal of Vertebrate Paleontology 11: 1–121 10.1080/02724634.1991.10011424 DOI
Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349: 227–235 10.1016/j.gene.2005.01.008 PubMed DOI
Bolker JA (2004) Embryology. In: LeBreton G, Beamish F, McKinley RS, editors. Sturgeons and paddlefish of North America. Kluwer Academic Publishers. 134–146.
Elinson RP (2009) Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods. J Exp Zool 312B: 526–532 10.1002/jez.b.21218 PubMed DOI
Ballard WW, Ginsburg AS (1980) Morphogenetic movements in acipenserid embryos. J Exp Zool 213: 69–103.
Bolker JA (1993) Gastrulation and mesoderm morphogenesis in the white sturgeon. J Exp Zool 266: 116–131 10.1002/jez.1402660206 PubMed DOI
Ginsburg AS, Dettlaff TA (1991) The russian sturgeon Acipenser guldensadti. Part1. Gametes and early development up to time of hatching. In: Dettlaff TA, Vassetzky SG, editors. Animal species for developmental studies, Volume2, Vertebrates. Springer. 16–65.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310 10.1002/aja.1002030302 PubMed DOI
Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zool B Mol Dev Evol 308: 591–608 10.1002/jez.b.21142 PubMed DOI
Bolker JA (1993) The mechanism of gastrulation in the white sturgeon. J Exp Zool 266: 132–145 10.1002/jez.1402660207 PubMed DOI
Takeuchi M, Okabe M, Aizawa S (2009) The Genus Polypterus (Bichirs): A Fish Group Diverged at the Stem of Ray-Finned Fishes (Actinopterygii). Cold Spring Harbor Protocols 2009: pdb.emo117–pdb.emo117 10.1101/pdb.emo117 PubMed DOI
Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Developmental Biology 332: 90–102 10.1016/j.ydbio.2009.05.543 PubMed DOI
Long WL, Ballard WW (2001) Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev Biol 1: 6. PubMed PMC
Ballard WW (1986) Morphogenetic movements and a provisional fate map of development in the holostean fish Amia calva. J Exp Zool 238: 355–372 10.1002/jez.1402380309 DOI
Ballard WW (1986) Stages and rates of normal development in the holostean fish Amia calva. J Exp Zool 238: 337–354 10.1002/jez.1402380308 DOI
Whitington PM, Dixon KE (1975) Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J Embryol Exp Morphol 33: 57–74. PubMed
Houston DW, Zhang J, Maines JZ, Wasserman SA, King ML (1998) A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125: 171–180. PubMed
Knaut H, Pelegri F, Bohmann K, Schwarz H, Nüsslein-Volhard C (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. The Journal of Cell Biology 149: 875–888. PubMed PMC
Miyake A, Saito T, Kashiwagi T, Ando D, Yamamoto A, et al. (2006) Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development. Int J Dev Biol 50: 619–625 10.1387/ijdb.062172am PubMed DOI
Herpin A, Rohr S, Riedel D, Kluever N, Raz E, et al. (2007) Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev Biol 7: 3 10.1186/1471-213X-7-3 PubMed DOI PMC
Kitauchi T, Saito T, Motomura T, Arai K, Yamaha E (2012) Distribution and function of germ plasm in cytoplasmic fragments from centrifuged eggs of the goldfish, Carassius auratus. Journal of Applied Ichthyology 28: 998–1005 10.1111/jai.12068 DOI
Ressom RE, Dixon KE (1988) Relocation and reorganization of germ plasm in Xenopus embryos after fertilization. Development 103: 507–518. PubMed
Savage RM, Danilchik MV (1993) Dynamics of Germ Plasm Localization and Its Inhibition by Ultraviolet Irradiation in Early Cleavage Xenopus Embryos. Developmental Biology 157: 371–382 10.1006/dbio.1993.1142 PubMed DOI
Taguchi A, Takii M, Motoishi M, Orii H, Mochii M, et al. (2012) Analysis of localization and reorganization of germ plasm in Xenopus transgenic line with fluorescence-labeled mitochondria. Dev Growth Differ 54: 767–776 10.1111/dgd.12005 PubMed DOI
Robb DL, Heasman J, Raats J, Wylie C (1996) A kinesin-like protein is required for germ plasm aggregation in Xenopus. Cell 87: 823–831. PubMed
Pelegri F, Knaut H, Maischein HM, Schulte-Merker S, Nüsslein-Volhard C (1999) A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol 9: 1431–1440. PubMed
Theusch E, Brown K, Pelegri F (2006) Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Developmental Biology 292: 129–141 10.1016/j.ydbio.2005.12.045 PubMed DOI
Sutasurja LA, Nieuwkoop PD (1974) The induction of the primordial germ cells in the urodeles. Development Genes and Evolution 175: 199–220 10.1007/BF00582092 PubMed DOI
Takeuchi T, Tanigawa Y, Minamide R, Ikenishi K, Komiya T (2010) Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. Mechanisms of Development 127: 146–158 10.1016/j.mod.2009.09.005 PubMed DOI
Heasman J, Hynes RO, Swan AP, Thomas V, Wylie CC (1981) Primordial germ cells of Xenopus embryos: the role of fibronectin in their adhesion during migration. Cell 27: 437–447. PubMed
Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124: 3157–3165. PubMed
Braat AK, Zandbergen T, van de Water S, Goos HJ, Zivkovic D (1999) Characterization of zebrafish primordial germ cells: Morphology and early distribution of vasa RNA. Dev Dyn 216: 153–167. PubMed
Weidinger G, Wolke U, Köprunner M, Klinger M, Raz E (1999) Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development 126: 5295–5307. PubMed
Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dorries J, et al. (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111: 647–659. PubMed
Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, et al. (2008) Control of Chemokine-Guided Cell Migration by Ligand Sequestration. Cell 132: 463–473 10.1016/j.cell.2007.12.034 PubMed DOI
Nieuwkoop PD, Sutasurya LA (1979) Primordial Germ Cells in the Chordates: Embryogenesis and Phylogenesis. Cambridge University Press.
Grandi G, Giovannini S, Chicca M (2007) Gonadogenesis in early developmental stages of Acipenser naccarii and influence of estrogen immersion on feminization. Journal of Applied Ichthyology 23: 3–8 10.1111/j.1439-0426.2006.00819.x DOI
Grandi G, Chicca M (2008) Histological and ultrastructural investigation of early gonad development and sex differentiation in Adriatic sturgeon (Acipenser naccarii, Acipenseriformes, Chondrostei). J Morphol 269: 1238–1262 10.1002/jmor.10657 PubMed DOI
Bolker JA (1994) Comparison of Gastrulation in Frogs and Fish. Integrative and Comparative Biology 34: 313–322 10.1093/icb/34.3.313 DOI
Köprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Gene Dev 15: 2877–2885. PubMed PMC
Saito T, Fujimoto T, Maegawa S, Inoue K, Tanaka M, et al. (2006) Visualization of primordial germ cells in vivo using GFP-nos1 3’UTR mRNA. Int J Dev Biol 50: 691–699 10.1387/ijdb.062143ts PubMed DOI
Bontems F, Stein A, Marlow F, Lyautey J, Gupta T, et al. (2009) Bucky Ball Organizes Germ Plasm Assembly in Zebrafish. Current Biology 19: 414–422 10.1016/j.cub.2009.01.038 PubMed DOI
Saito T, Goto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biology of Reproduction 78: 159–166 10.1095/biolreprod.107.060038 PubMed DOI
Saito T, Goto R, Fujimoto T, Kawakami Y, Arai K, et al. (2010) Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int J Dev Biol 54: 1479–1484 10.1387/ijdb.103111ts PubMed DOI
Saito T, Goto R, Kawakami Y, Nomura K, Tanaka H, et al... (2011) The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish. PLoS ONE 6: e24460–. doi:10.1371/journal.pone.0024460. PubMed PMC
Goto R, Saito T, Takeda T, Fujimoto T, Takagi M, et al. (2012) Germ cells are not the primary factor for sexual fate determination in goldfish. Developmental Biology 370: 98–109. PubMed
Extavour CGM (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130: 5869–5884 10.1242/dev.00804 PubMed DOI
Ewen-Campen B, Schwager EE, Extavour CGM (2009) The molecular machinery of germ line specification. Mol Reprod Dev 77: 3–18 10.1002/mrd.21091 PubMed DOI
Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, et al. (2006) Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430. Current Biology 16: 2135–2142 10.1016/j.cub.2006.08.086 PubMed DOI PMC
Giraldez AJ (2006) Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science 312: 75–79 10.1126/science.1122689 PubMed DOI
Mishima Y (2011) Widespread roles of microRNAs during zebrafish development and beyond. Development. PubMed
Ikenishi K, Kotani M, Tanabe K (1974) Ultrastructural changes associated with UV irradiation in the “germinal plasm” of Xenopus laevis. Developmental Biology 36: 155–168. PubMed
Marlow FL, Mullins MC (2008) Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Developmental Biology 321: 40–50 10.1016/j.ydbio.2008.05.557 PubMed DOI PMC
Zelazowska M, Kilarski W, Bilinski SM, Podder DD, Kloc M (2007) Balbiani cytoplasm in oocytes of a primitive fish, the sturgeon Acipenser gueldenstaedtii, and its potential homology to the Balbiani body (mitochondrial cloud) of Xenopus laevis oocytes. Cell Tissue Res 329: 137–145 10.1007/s00441-007-0403-9 PubMed DOI
Extavour CGM (2007) Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integrative and Comparative Biology 47: 770–785 10.1093/icb/icm027 PubMed DOI
Johnson AD, Drum M, Bachvarova RF, Masi T, White ME, et al. (2003) Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evolution & Development 5: 414–431. PubMed
Johnson AD, Richardson E, Bachvarova RF, Crother BI (2011) Evolution of the germ line-soma relationship in vertebrate embryos. Reproduction 141: 291–300 10.1530/REP-10-0474 PubMed DOI
Bachvarova RF, Crother BI, Johnson AD (2009) Evolution of germ cell development in tetrapods: comparison of urodeles and amniotes. Evolution & Development 11: 603–609 10.1111/j.1525-142X.2009.00366.x PubMed DOI
MacArthur H, Houston DW, Bubunenko M, Mosquera L, King ML (2000) DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mechanisms of Development 95: 291–295. PubMed
Hudson C, Woodland HR (1998) Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Mechanisms of Development 73: 159–168. PubMed
Sekizaki H, Takahashi S, Tanegashima K, Onuma Y, Haramoto Y, et al. (2004) Tracing of Xenopus tropicalis germ plasm and presumptive primordial germ cells with the Xenopus tropicalis DAZ-like gene. Dev Dyn 229: 367–372 10.1002/dvdy.10448 PubMed DOI
Berekelya LA, Ponomarev MB, Luchinskaya NN, Belyavsky AV (2003) Xenopus Germes encodes a novel germ plasm-associated transcript. Gene Expression Patterns 3: 521–524. PubMed
Horvay K, Claußen M, Katzer M, Landgrebe J, Pieler T (2006) Xenopus Dead end mRNA is a localized maternal determinant that serves a conserved function in germ cell development. Developmental Biology 291: 1–11 10.1016/j.ydbio.2005.06.013 PubMed DOI
Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, et al. (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137: 651–660 10.1242/dev.038554 PubMed DOI PMC
Strome S, Lehmann R (2007) Germ versus soma decisions: lessons from flies and worms. Science 316: 392–393 10.1126/science.1140846 PubMed DOI
Mizuno T, Yamaha E, Wakahara M, Kuroiwa A, Takeda H (1996) Mesoderm induction in zebrafish. Nature 383: 131–132.
Yamaha E, Mizuno T, Hasebe Y, Takeda H, Yamazaki F (1998) Dorsal specification in blastoderm at the blastula stage in the goldfish, Carassius auratus. Dev Growth Differ 40: 267–275. PubMed
Maegawa S, Yasuda K, Inoue K (1999) Maternal mRNA localization of zebrafish DAZ-like gene. Mechanisms of Development 81: 223–226. PubMed
Buchholz DR, Singamsetty S, Karadge U, Williamson S, Langer CE, et al. (2007) Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev Dyn 236: 1259–1272 10.1002/dvdy.21153 PubMed DOI
Elinson RP, Sabo MC, Fisher C, Yamaguchi T, Orii H, et al. (2011) Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs. EvoDevo 2: 20 10.1186/2041-9139-2-20 PubMed DOI PMC
Sturgeon gut development: a unique yolk utilization strategy among vertebrates
Delivery of Iron Oxide Nanoparticles into Primordial Germ Cells in Sturgeon
Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production
Biotechnology applied to fish reproduction: tools for conservation
Polyspermy produces viable haploid/diploid mosaics in sturgeon
Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation