Polyspermy produces viable haploid/diploid mosaics in sturgeon
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29701759
PubMed Central
PMC6203876
DOI
10.1093/biolre/ioy092
PII: 4985831
Knihovny.cz E-resources
- MeSH
- Reproductive Techniques, Assisted veterinary MeSH
- Breeding MeSH
- Diploidy MeSH
- Embryonic Development genetics MeSH
- Fertilization genetics MeSH
- Haploidy MeSH
- Models, Genetic MeSH
- Mosaicism * MeSH
- Endangered Species MeSH
- Fishes embryology genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Most of sturgeon species (Acipenseridae) are currently critically endangered. Attempts to revive these populations include artificial breeding in hatcheries. However, under artificial reproduction, sturgeon embryos occasionally develop atypically, showing 3, 5, 6, 7, 9, or 10 cells at the 2- to 4-cell stage. This study was undertaken with the objective of understanding the mechanism of the atypical division (AD) in embryos during artificial breeding. Using several sturgeon species, we tested two hypotheses: (1) polyspermy and (2) retention of the second polar body. We found that (1) AD embryos survive similar to controls, (2) the ratio of AD embryos is positively correlated with the amount of sperm used for fertilization, (3) the number of micropyles and the area covered by them in AD embryos is significantly greater when compared to controls, (4) numerous spermatozoa nuclei are in the cytoplasm after fertilization, (5) all AD embryos are mosaics, and (6) AD fishes with n/2n ploidy contain diploid cells from maternal and paternal genetic markers, while the haploid cells contained only paternal ones. These results clearly indicate that AD embryos arise from plasmogamy where the accessory spermatozoon/spermatozoa entry the egg and develop jointly with zygotic cells. This suggests that a well-controlled fertilization procedure is needed to prevent the production of sturgeon with irregular ploidy, which can have detrimental genetic effects on sturgeon populations. On the other hand, if AD fish can produce haploid-derived clonal gametes, induction of multiple-sperm mosaicism might be a useful tool for the rapid production of isogenic strains of sturgeons.
Nishiura Station South Ehime Fisheries Research Center Ehime University Uchidomari Ainan Ehime Japan
See more in PubMed
Bemis WE, Findeis EK, Grande L. An overview of Acipenseriformes. Environ Biol Fishes 1997; 48(1-4):25–71.
Carmona R, Domezain A, Garcia Galleo M, Hernando JA, Rodriges F, Ruiz-Rejon M. Biology, Conservation and Sustainable Development of Sturgeons. Fish and Fisheries Series 29. New York: Springer-Verlag New York Inc; 2009: 26.
Birstein VJ, Bemis WE, Waldman JR. The threatened status of Acipenseriform species: a summary. Environ Biol Fishes 1997; 48(1-4):427–435.
Speer L, Lauck L, Pikitch E, Boa S, Dropkin L, Spruill V. Roe to Ruin: The Decline of Sturgeon in the Caspian Sea and the Road to Recovery. New York: Natural Resources Defense Council; 2000.
The IUCN Red List of Threatened Species™ [Internet] Sturgeon more critically endangered than any other group of species. http://www.iucn.org/?4928/Sturgeon-more-critically-endangered-than-any-other-group-of-species. Accessed 18 March 2010.
Khodorevskaya RP, Dovgopol GF, Zhuravleva OL, Vlasenko AD. Present status of commercial stocks of sturgeons in the Caspian Sea basin. Environ Biol Fishes 1997; 48(1-4):209–219.
Witzenberger KA, Hochkirch A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv 2011; 20(9):1843–1861.
Dettlaff TA, Ginsburg AS, Schmalhausen OI. Development of sturgeon fishes (Razvitie osetrovyh ryb). In Russian. Moscow: Nauka; 1981:77–91.
Ginzburg AS. Monospermiya u osetrovykh ryb pri normal’nom oplodotvorenii i posledstviya proniknoveniya v yaitso sverkhchislennykh spermiev (Monospermy in Sturgeons upon Normal Fertilization and Aftereffect of Supernumerary Spermatozoa Penetrating the Egg). Doklady AN SSSR 1957; 114(2):445–447.
Ginsburg AS. Fertilization in Fish and Problem of Polyspermy. Translated from Russian Jerusalem: Israel Program for Scientific Translations; 1972: 183–200.
Zalenskii VV. Evolution of Acipenser ruthenus development. Volume 7, issue 3, part 1. In Russian (Istoriya razvitiya sterlyadi (Acipenser ruthenus)). Kazan: typography of the Imperial University; 1878: 18–30.
Cherr GN, Clark WH. Gamete interaction in the white sturgeon Acipenser transmontanus: a morphological and physiological review. Environ Biol Fish 1985; 14(1):11–22.
Debus L, Winkler M, Billard R. Structure of micropyle surface on oocytes and caviar grains in sturgeons. Internat Rev Hydrobiol 2002;87(5-6):585–603.
Tanaka M, Kimura S, Fujimoto T, Sakao S, Yamaha E, Arai K. Spontaneous mosaicism occurred in normally fertilized and gynogenetically induced progeny of the kokanee salmon Oncorhynchus nerka. Fisheries Sci 2003; 69(1):176–180.
Chourrout D. Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow trout (Salmo gairdneri Richardson). Reprod Nutr Dévelop 1980; 20(3A):727–733. PubMed
Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction 2011; 142(6):779–792. PubMed
Fontana F, Colombo G. The chromosomes of Italian sturgeons. Experientia 1974; 30(7):739–742. PubMed
Dingerkus G, Howell WM. Karyotypic analysis and evidence of tetraploidy in the north american paddlefish, polyodon spathula. Science 1976; 194(4267):842–844. PubMed
Birstein VJ, Vasiliev VP. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces) Karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 1987; 72(1):3–12.
Fontana F. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 1994; 37(5):888–892. PubMed
Kim DS, Nam YK, Noh JK, Park CH, Chapman FA. Karyotype of North American shortnose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol Res 2005; 52(1):94–97.
Vasil’ev VP, Sokolov LI, Serebryakova EV. Karyotype of the Siberian sturgeon Acipenser baerii Brandt from the Lena River and some questions of the acipenserid karyotypic evolution. Vopr Ikhtiol 1980; 23:814–822.
Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 2001; 158:1203–1215. PubMed PMC
Podushka SB. New method to obtaine sturgeon eggs. J Appl Ichthyol 1999; 15(4-5):319–319
Cotelli F, Andronico F, Brivio MF, Lamia CL. Structure and composition of the fish egg chorion (Carassius auratus). J Ultrastruct Mol Struct Res 1988; 99(1):70–78.
Psenicka M, Rodina M, Linhart O. Ultrastructural study on the fertilisation process in sturgeon (Acipenser), function of acrosome and prevention of polyspermy. Anim Reprod Sci 2010; 117(1-2):147–154. PubMed
Havelka M, Fujimoto T, Hagihara S, Adachi S, Katsutoshi A. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Sci Rep 2017; 7(1):1694. PubMed PMC
Lutikhuizen, Pijnacker. Mosaic haploid-diploid embryos and polyspermy in the tellinid bivalve Macoma balthica. Genome 2002; 45(1):59–62. PubMed
Miller GD, Seeb JE, Bue BG, Sharr S. Saltwater exposure at fertilization induces ploidy alterations. including mosaicism, in salmonid. Can J Fish Aquat Sci 1994; 51(S1):42–49.
Yamaki M, Satou H, Taniura K, Arai K. Progeny of the diploid-tetraploid mosaic amago salmon. Nippon Suisan Gakkaishi 1999; 65(6):1084–1089.
Tanaka M, Yamaha E, Arai K. Survival capacity of haploid-diploid goldfish chimeras. J Exp Zool 2004; 301A(6):491–501. PubMed
Saito T, Pšenička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E. The Origin and migration of primordial germ cells in sturgeons. PLoS One 2014; 9(2):1–10. PubMed PMC
Saito T, Pšenička M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol Reprod 2015; 93:1–7. PubMed
Yoshikawa H, Morishima K, Fujimoto T, Saito T, Kobayashi T, Yamaha E, Arai K. Chromosome doubling in early spermatogonia produces diploid spermatozoa in a natural clonal fish. Biol Reprod 2009; 80:973–979. PubMed
Boveri T. Zellen-Studien: Über die Natur der Centrosomen, vol. 28. Jena, Germany: Fisher Z Med Naturw; 1901:1–220.
Wang WH, Day BN, Wu GM. How does polyspermy happen in mammalian oocytes? Microsc Res Tech 2003; 61:335–341. PubMed
Simple Field Storage of Fish Samples for Measurement of DNA Content by Flow Cytometry
First evidence of viable progeny from three interspecific parents in sturgeon