Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid

. 2017 May 10 ; 7 (1) : 1694. [epub] 20170510

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28490748
Odkazy

PubMed 28490748
PubMed Central PMC5431886
DOI 10.1038/s41598-017-01768-3
PII: 10.1038/s41598-017-01768-3
Knihovny.cz E-zdroje

Sturgeons (Acipenseriformes) are among the most endangered species in the world due to fragmentation and destruction of their natural habitats and to overexploitation, mainly for highly priced caviar. This has led to the development of sturgeon culture, originally for reintroduction, but more recently for caviar production. In both cases, accurate species identification is essential. We report a new tool for accurate identification of Huso huso and Acipenser ruthenus based on nuclear DNA markers. We employed ddRAD sequencing to identify species-specific nucleotide variants, which served as specific binding sites for diagnostic primers. The primers allowed identification of Huso huso and Acipenser ruthenus as well as their discrimination from A. baerii, A. schrenckii, A. gueldenstaedtii, A. stellatus, A. persicus, A. mikadoi, A. transmontanus, and H. dauricus and identification of A. ruthenus and H. huso hybrids with these species, except hybrid between A. ruthenus and A. stellatus. The species-specific primers also allowed identification of bester (H. huso × A. ruthenus), the most commercially exploited sturgeon hybrid. The tool, based on simple PCR and gel electrophoresis, is rapid, inexpensive, and reproducible. It will contribute to conservation of remaining wild populations of A. ruthenus and H. huso, as well as to traceability of their products.

Zobrazit více v PubMed

Bemis WE, Findeis EK, Grande L. An overview of Acipenseriformes. Environ. Biol. Fishes. 1997;48:25–72. doi: 10.1023/A:1007370213924. DOI

International Union for Conservation of Nature (2016). The IUCN Red List of Threatened Species, Version 2016-1, www.iucnredlist.org (accessed 29 July 2016).

Rosenthal H, Gessner J, Bronzi P. Conclusions and recommendations of the 7th International Symposium on Sturgeons: Sturgeons, Science and Society at the cross-roads – Meeting the Challenges of the 21st Century. J. Appl. Ichthyol. 2014;30:1105–1108. doi: 10.1111/jai.12614. DOI

Bronzi P, Rosenthal H. Present and future sturgeon and caviar production and marketing: A global market overview. J. Appl. Ichthyol. 2014;30:1536–1546. doi: 10.1111/jai.12628. DOI

Wei QW, Zou Y, Li P, Li L. Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009) J. Appl. Ichthyol. 2011;27:162–168. doi: 10.1111/j.1439-0426.2011.01669.x. DOI

Vasil’eva ED. Some morphological characteristics of Acipenserid fishes: considerations of their variability and utility in taxonomy. J. Appl. Ichthyol. 1999;15:32–34. doi: 10.1111/j.1439-0426.1999.tb00201.x. DOI

Havelka M, Kašpar V, Hulák M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 2011;60:93–103.

Ludwig A. Identification of Acipenseriformes species in trade. J. Appl. Ichthyol. 2008;24:2–19. doi: 10.1111/j.1439-0426.2008.01085.x. DOI

Boscari E, et al. Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade. Mol. Ecol. Resour. 2014;14:489–498. doi: 10.1111/1755-0998.12203. PubMed DOI

Boscari E, et al. Fast genetic identification of the Beluga sturgeon and its sought-after caviar to stem illegal trade. Food Control. 2017;75:145–152. doi: 10.1016/j.foodcont.2016.11.039. DOI

Birstein, V. J., Waldman, J. R. & Bemis, W. E. Sturgeon biodiversity and conservation (Springer, 2006).

Dudu A, et al. Nuclear markers of Danube sturgeons hybridization. Int. J. Mol. Sci. 2011;12:6796–6809. doi: 10.3390/ijms12106796. PubMed DOI PMC

Ludwig A, Lippold S, Debus L, Reinartz R. First evidence of hybridization between endangered starlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol. Invasions. 2009;11:753–760. doi: 10.1007/s10530-008-9289-z. DOI

Wolf DE, Takebayashi N, Rieseberg LH. Predicting the risk of extinction through hybridization. Conserv. Biol. 2001;15:1039–1053. doi: 10.1046/j.1523-1739.2001.0150041039.x. DOI

Ogden R, et al. Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Mol. Ecol. 2013;22:3112–3123. doi: 10.1111/mec.12234. PubMed DOI

Khodorevskaya, R. P., Ruban, G. I., Pavlov, D. S. & Ruban, G. J. Behaviour, migrations, distribution, and stocks of sturgeons in the Volga-Caspian basin (Books on Demand, 2009).

Gessner, J., Freyhof, J. & Kottelat, M. Acipenser ruthenus. The IUCN Red List of Threatened Species 2010 e.T227A13039007, http://dx.doi.org/10.2305/IUCN.UK.2010-1.RLTS.T227A13039007.en (2010). DOI

Sandu, C., Reinartz, R. & Bloesch, J. “Sturgeon 2020”: A program for the protection and rehabilitation of Danube sturgeons. Danube Sturgeon Task Force (DSTF) & EU Strategy for the Danube River (EUSDR) Priority Area (PA) 6 – Biodiversityhttp://www.dstf.eu/assets/Uploads/documents/Sturgeon-2020edited_2.pdf (2013).

Doukakis P, et al. Testing the effectiveness of an international conservation agreement: marketplace forensics and CITES caviar trade regulation. PLoS ONE. 2012;7:e40907. doi: 10.1371/journal.pone.0040907. PubMed DOI PMC

Linhartová Z, et al. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology. 2015;84:1246–1255. doi: 10.1016/j.theriogenology.2015.07.003. PubMed DOI

Saito T, Psenicka M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso) Biol. Reprod. 2015;93:96. doi: 10.1095/biolreprod.115.128314. PubMed DOI

Peng ZG, et al. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes) Mol. Phylogen. Evol. 2007;42:854–862. doi: 10.1016/j.ympev.2006.09.008. PubMed DOI

Mugue NS, Barmintseva AE, Rastorguev SM, Mugue VN, Barminstev VA. Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ. J. Genet. 2008;44:793–798. doi: 10.1134/S1022795408070065. PubMed DOI

Burtsev, I. A. In Sturgeon Stocks and Caviar Trade Workshop (eds V. I. Birstein, A. Bauer & A. Kaiser-Pohlmann) 35–40 (IUCN Publication Services, Cambridge, UK).

Boscari E, Congiu L. The need for genetic support in restocking activities and ex situ conservation programmes: the case of the Adriatic sturgeon (Acipenser naccarii Bonaparte, 1836) in the Ticino River Park. J. Appl. Ichthyol. 2014;30:1416–1422. doi: 10.1111/jai.12545. DOI

Congiu L, et al. Managing polyploidy in ex situ conservation genetics: the case of the critically endangered Adriatic sturgeon (Acipenser naccarii) PLoS ONE. 2011;6:e18249. doi: 10.1371/journal.pone.0018249. PubMed DOI PMC

Bronzi P, Rosenthal H, Gessner J. Global sturgeon aquaculture production: an overview. J. Appl. Ichthyol. 2011;27:169–175. doi: 10.1111/j.1439-0426.2011.01757.x. DOI

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method ford de novo SNP discovery and genotyping in model and non-model species. PLoS ONE7, e37135, doi:10.1371/journal.pone.0037135 (2012). PubMed PMC

Untergasser A, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Kearse M, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...