Non-invasive temporal interference electrical stimulation of the human hippocampus

. 2023 Nov ; 26 (11) : 1994-2004. [epub] 20231019

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37857775

Grantová podpora
R01 AG059089 NIA NIH HHS - United States
R01 AG076708 NIA NIH HHS - United States
R01 MH117063 NIMH NIH HHS - United States
R03 AG072233 NIA NIH HHS - United States

Odkazy

PubMed 37857775
PubMed Central PMC10620081
DOI 10.1038/s41593-023-01456-8
PII: 10.1038/s41593-023-01456-8
Knihovny.cz E-zdroje

Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.

Erratum v

PubMed

Zobrazit více v PubMed

Silberberg D, Anand NP, Michels K, Kalaria RN. Brain and other nervous system disorders across the lifespan—global challenges and opportunities. Nature. 2015;527:S151–S154. doi: 10.1038/nature16028. PubMed DOI

O’Brien PL, Thomas CP, Hodgkin D, Levit KR, Mark TL. The diminished pipeline for medications to treat mental health and substance use disorders. Psychiatr. Serv. 2014;65:1433–1438. doi: 10.1176/appi.ps.201400044. PubMed DOI PMC

Gravitz L. Drugs: a tangled web of targets. Nature. 2011;475:S9–S11. doi: 10.1038/475S9a. PubMed DOI

Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8:67–81. doi: 10.1016/S1474-4422(08)70291-6. PubMed DOI

Greenberg BD, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive–compulsive disorder: worldwide experience. Mol. Psychiatry. 2010;15:64–79. doi: 10.1038/mp.2008.55. PubMed DOI PMC

Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–660. doi: 10.1016/j.neuron.2005.02.014. PubMed DOI

Scangos KW, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 2021;27:1696–1700. doi: 10.1038/s41591-021-01480-w. PubMed DOI PMC

Lozano AM, et al. A Phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J. Alzheimers Dis. 2016;54:777–787. doi: 10.3233/JAD-160017. PubMed DOI PMC

Kuhn J, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol. Psychiatry. 2015;20:353–360. doi: 10.1038/mp.2014.32. PubMed DOI

Pikov, V. in Implantable Neuroprostheses for Restoring Function (ed. Kilgore, K.) 383–394 (Woodhead Publishing, 2015).

Nitsche MA, Paulus W. Transcranial direct current stimulation—update 2011. Restor. Neurol. Neurosci. 2011;29:463–492. PubMed

Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–199. doi: 10.1016/j.neuron.2007.06.026. PubMed DOI

Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6:1–13. doi: 10.1016/j.brs.2012.02.005. PubMed DOI PMC

Grossman N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169:1029–1041.e16. doi: 10.1016/j.cell.2017.05.024. PubMed DOI PMC

Grossman N. Modulation without surgical intervention. Science. 2018;361:461–462. doi: 10.1126/science.aau4915. PubMed DOI

Zhu Z, et al. Temporal Interference (TI) stimulation boosts functional connectivity in human motor cortex: a comparison study with transcranial direct current stimulation (tDCS) Neural Plast. 2022;2022:7605046. doi: 10.1155/2022/7605046. PubMed DOI PMC

von Conta J, et al. Benchmarking the effects of transcranial temporal interference stimulation (tTIS) in humans. Cortex. 2022;154:299–310. doi: 10.1016/j.cortex.2022.05.017. PubMed DOI

Piao Y, et al. Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies. Brain Sci. 2022;12:1194. doi: 10.3390/brainsci12091194. PubMed DOI PMC

Iacono MI, et al. MIDA: a multimodal imaging-based detailed anatomical model of the human head and neck. PLoS ONE. 2015;10:e0124126. doi: 10.1371/journal.pone.0124126. PubMed DOI PMC

Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 2014;15:655–669. doi: 10.1038/nrn3785. PubMed DOI

Chua EF, Schacter DL, Rand-Giovannetti E, Sperling RA. Evidence for a specific role of the anterior hippocampal region in successful associative encoding. Hippocampus. 2007;17:1071–1080. doi: 10.1002/hipo.20340. PubMed DOI

Wicks RT, et al. Hippocampal CA1 and CA3 neural recording in the human brain: validation of depth electrode placement through high-resolution imaging and electrophysiology. Neurosurg. Focus. 2020;49:E5. doi: 10.3171/2020.4.FOCUS20164. PubMed DOI

Angenstein F. The actual intrinsic excitability of granular cells determines the ruling neurovascular coupling mechanism in the rat dentate gyrus. J. Neurosci. 2014;34:8529–8545. doi: 10.1523/JNEUROSCI.0472-14.2014. PubMed DOI PMC

Li LM, et al. Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Hum. Brain Mapp. 2019;40:904–915. doi: 10.1002/hbm.24420. PubMed DOI PMC

Sperling R, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. NeuroImage. 2003;20:1400–1410. doi: 10.1016/S1053-8119(03)00391-4. PubMed DOI PMC

Zeineh MM, Engel SA, Thompson PM, Bookheimer SY. Dynamics of the hippocampus during encoding and retrieval of face–name pairs. Science. 2003;299:577–580. doi: 10.1126/science.1077775. PubMed DOI

Herweg NA, Solomon EA, Kahana MJ. Theta oscillations in human memory. Trends Cogn. Sci. 2020;24:208–227. doi: 10.1016/j.tics.2019.12.006. PubMed DOI PMC

Otten LJ, Henson RN, Rugg MD. State-related and item-related neural correlates of successful memory encoding. Nat. Neurosci. 2002;5:1339–1344. doi: 10.1038/nn967. PubMed DOI

Wang JX, et al. Targeted enhancement of cortical–hippocampal brain networks and associative memory. Science. 2014;345:1054–1057. doi: 10.1126/science.1252900. PubMed DOI PMC

Eldridge LL, Engel SA, Zeineh MM, Bookheimer SY, Knowlton BJ. A dissociation of encoding and retrieval processes in the human hippocampus. J. Neurosci. 2005;25:3280–3286. doi: 10.1523/JNEUROSCI.3420-04.2005. PubMed DOI PMC

Angenstein F. The role of ongoing neuronal activity for baseline and stimulus-induced BOLD signals in the rat hippocampus. NeuroImage. 2019;202:116082. doi: 10.1016/j.neuroimage.2019.116082. PubMed DOI

Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 2012;13:713–726. doi: 10.1038/nrn3338. PubMed DOI

Ritchey M, Libby LA, Ranganath C. Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog. Brain Res. 2015;219:45–64. doi: 10.1016/bs.pbr.2015.04.001. PubMed DOI

Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: a systematic review. Cortex. 2022;147:112–139. doi: 10.1016/j.cortex.2021.12.001. PubMed DOI

Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, 1932).

James, W. Psychology: Briefer Course (Macmillan and Co, 1892).

Finn B. A framework of episodic updating: an account of memory updating after retrieval. Psychol. Learn. Motiv. 2017;67:173–211. doi: 10.1016/bs.plm.2017.03.006. DOI

Sunshine MD, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun. Biol. 2021;4:107. doi: 10.1038/s42003-020-01604-x. PubMed DOI PMC

Lee S, Lee C, Park J, Im CH. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models. Sci. Rep. 2020;10:11730. doi: 10.1038/s41598-020-68660-5. PubMed DOI PMC

Rampersad S, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study. NeuroImage. 2019;202:116124. doi: 10.1016/j.neuroimage.2019.116124. PubMed DOI PMC

Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 2010;30:15067–15079. doi: 10.1523/JNEUROSCI.2059-10.2010. PubMed DOI PMC

Johnson L, et al. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 2020;6:eaaz2747. doi: 10.1126/sciadv.aaz2747. PubMed DOI PMC

Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl Acad. Sci. USA. 2019;116:5747–5755. doi: 10.1073/pnas.1815958116. PubMed DOI PMC

Opitz A, et al. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci. Rep. 2016;6:31236. doi: 10.1038/srep31236. PubMed DOI PMC

Sperling RA, et al. Encoding novel face–name associations: a functional MRI study. Hum. Brain Mapp. 2001;14:129–139. doi: 10.1002/hbm.1047. PubMed DOI PMC

Zeithamova D, de Araujo Sanchez MA, Adke A. Trial timing and pattern-information analyses of fMRI data. NeuroImage. 2017;153:221–231. doi: 10.1016/j.neuroimage.2017.04.025. PubMed DOI

Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929. doi: 10.1126/science.1099745. PubMed DOI

Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321:53–57. doi: 10.1126/science.1149381. PubMed DOI PMC

Levy WB, Steward O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 1979;175:233–245. doi: 10.1016/0006-8993(79)91003-5. PubMed DOI

Hillman EM. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 2014;37:161–181. doi: 10.1146/annurev-neuro-071013-014111. PubMed DOI PMC

Fellner MC, et al. Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation. PLoS Biol. 2019;17:e3000403. doi: 10.1371/journal.pbio.3000403. PubMed DOI PMC

Greenberg JA, Burke JF, Haque R, Kahana MJ, Zaghloul KA. Decreases in theta and increases in high frequency activity underlie associative memory encoding. NeuroImage. 2015;114:257–263. doi: 10.1016/j.neuroimage.2015.03.077. PubMed DOI PMC

Hanslmayr S, Staresina BP, Bowman H. Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum. Trends Neurosci. 2016;39:16–25. doi: 10.1016/j.tins.2015.11.004. PubMed DOI PMC

Solomon EA, et al. Dynamic theta networks in the human medial temporal lobe support episodic memory. Curr. Biol. 2019;29:1100–1111 e1104. doi: 10.1016/j.cub.2019.02.020. PubMed DOI PMC

Shaw K, et al. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat. Commun. 2021;12:3190. doi: 10.1038/s41467-021-23508-y. PubMed DOI PMC

Ekstrom AD. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philos. Trans. R. Soc. Lond. B. 2021;376:20190634. doi: 10.1098/rstb.2019.0634. PubMed DOI PMC

Hill PF, et al. Distinct neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex. J. Neurosci. 2021;41:6343–6352. doi: 10.1523/JNEUROSCI.0278-21.2021. PubMed DOI PMC

Esmaeilpour, Z. et al. Limited sensitivity of hippocampal synaptic function or network oscillations to unmodulated kilohertz electric fields. eNeuro7, ENEURO.0368-20.2020 (2020). PubMed PMC

Loh A, et al. Probing responses to deep brain stimulation with functional magnetic resonance imaging. Brain Stimul. 2022;15:683–694. doi: 10.1016/j.brs.2022.03.009. PubMed DOI

Bikson M, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–661. doi: 10.1016/j.brs.2016.06.004. PubMed DOI PMC

O’Connell NE, et al. Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2 mA. PLoS ONE. 2012;7:e47514. doi: 10.1371/journal.pone.0047514. PubMed DOI PMC

Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 2011;12:585–601. doi: 10.1038/nrn3085. PubMed DOI PMC

Huijbers W, et al. Amyloid-beta deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain. 2015;138:1023–1035. doi: 10.1093/brain/awv007. PubMed DOI PMC

Miller SL, et al. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J. Neurol. Neurosurg. Psychiatry. 2008;79:630–635. doi: 10.1136/jnnp.2007.124149. PubMed DOI PMC

Tregellas JR. Neuroimaging biomarkers for early drug development in schizophrenia. Biol. Psychiatry. 2014;76:111–119. doi: 10.1016/j.biopsych.2013.08.025. PubMed DOI PMC

Jefferys JG. Advances in understanding basic mechanisms of epilepsy and seizures. Seizure. 2010;19:638–646. doi: 10.1016/j.seizure.2010.10.026. PubMed DOI

Ma DS, Correll J, Wittenbrink B. The Chicago face database: a free stimulus set of faces and norming data. Behav. Res Methods. 2015;47:1122–1135. doi: 10.3758/s13428-014-0532-5. PubMed DOI

Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Annu Int Conf. IEEE Eng. Med Biol. Soc. 2015;2015:222–225. PubMed

Nielsen JD, et al. Automatic skull segmentation from MR images for realistic volume conductor models of the head: assessment of the state-of-the-art. NeuroImage. 2018;174:587–598. doi: 10.1016/j.neuroimage.2018.03.001. PubMed DOI

Bossetti CA, Birdno MJ, Grill WM. Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. J. Neural Eng. 2008;5:44–53. doi: 10.1088/1741-2560/5/1/005. PubMed DOI

McCann H, Pisano G, Beltrachini L. Variation in reported human head tissue electrical conductivity values. Brain Topogr. 2019;32:825–858. doi: 10.1007/s10548-019-00710-2. PubMed DOI PMC

Hasgall, P. A., et al. IT’IS database for thermal and electromagnetic parameters of biological tissues. Version 4.1 (2022); https://itis.swiss/database

Non-invasive temporal interference electrical stimulation of the human hippocampus, oSPARC (2023); https://osparc.io/study/9641ba42-c4db-11ed-b8b9-02420a0b5f22 PubMed PMC

Brainard DH. The psychophysics toolbox. Spat. Vis. 1997;10:433–436. doi: 10.1163/156856897X00357. PubMed DOI

Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

Bürkner P-C. brms: an R package for Bayesian multilevel models using stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI

Lo S, Andrews S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015;6:1171. doi: 10.3389/fpsyg.2015.01171. PubMed DOI PMC

Christensen, R. H. B. ordinal—regression models for ordinal data. R package version 2019 12-10https://CRAN.R-project.org/package=ordinal (2019).

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:48. doi: 10.18637/jss.v067.i01. DOI

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82:26. doi: 10.18637/jss.v082.i13. DOI

Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.5https://CRAN.R-project.org/package=DHARMa (2022).

Hothorn T, Hornik K, van de Wiel MA, Zeileis A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 2008;28:1–23. doi: 10.18637/jss.v028.i08. PubMed DOI

Ekhtiari H, et al. A checklist for assessing the methodological quality of concurrent tES–fMRI studies (ContES checklist): a consensus study and statement. Nat. Protoc. 2022;17:596–617. doi: 10.1038/s41596-021-00664-5. PubMed DOI PMC

Greinacher R, Buhot L, Moller L, Learmonth G. The time course of ineffective sham-blinding during low-intensity (1 mA) transcranial direct current stimulation. Eur. J. Neurosci. 2019;50:3380–3388. doi: 10.1111/ejn.14497. PubMed DOI PMC

Brown BM, Hall P, Young GA. The smoothed median and the bootstrap. Biometrika. 2001;88:519–534. doi: 10.1093/biomet/88.2.519. DOI

Wolodzko, T. Kernelboot: smoothed bootstrap and random generation from kernel densities. R. package version0.1.10 (2023); https://CRAN.R-project.org/package=kernelboot

Fischl B. FreeSurfer. NeuroImage. 2012;62:774–781. doi: 10.1016/j.neuroimage.2012.01.021. PubMed DOI PMC

Iglesias JE, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage. 2015;115:117–137. doi: 10.1016/j.neuroimage.2015.04.042. PubMed DOI PMC

Collin SH, Milivojevic B, Doeller CF. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 2015;18:1562–1564. doi: 10.1038/nn.4138. PubMed DOI PMC

Cooper RA, Ritchey M. Cortico-hippocampal network connections support the multidimensional quality of episodic memory. eLife. 2019;8:e45591. doi: 10.7554/eLife.45591. PubMed DOI PMC

Libby LA, Ekstrom AD, Ragland JD, Ranganath C. Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J. Neurosci. 2012;32:6550–6560. doi: 10.1523/JNEUROSCI.3711-11.2012. PubMed DOI PMC

Ritchey M, Yonelinas AP, Ranganath C. Functional connectivity relationships predict similarities in task activation and pattern information during associative memory encoding. J. Cogn. Neurosci. 2014;26:1085–1099. doi: 10.1162/jocn_a_00533. PubMed DOI

Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. NeuroVault (2015); https://neurovault.org/collections/3731/ PubMed PMC

Ritchey M, Montchal ME, Yonelinas AP, Ranganath C. Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. eLife. 2015;4:e05025. doi: 10.7554/eLife.05025. PubMed DOI PMC

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI

Smith SM. Overview of fMRI analysis. Br. J. Radiol. 2004;77:S167–S175. doi: 10.1259/bjr/33553595. PubMed DOI

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–841. doi: 10.1006/nimg.2002.1132. PubMed DOI

Smith SM. Fast robust automated brain extraction. Hum. Brain Mapp. 2002;17:143–155. doi: 10.1002/hbm.10062. PubMed DOI PMC

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC

McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage. 2012;61:1277–1286. doi: 10.1016/j.neuroimage.2012.03.068. PubMed DOI PMC

Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport. 1998;9:3735–3739. doi: 10.1097/00001756-199811160-00030. PubMed DOI

Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. NeuroImage. 2003;20:1052–1063. doi: 10.1016/S1053-8119(03)00435-X. PubMed DOI

Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM. Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage. 2004;21:1732–1747. doi: 10.1016/j.neuroimage.2003.12.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...