Non-invasive temporal interference electrical stimulation of the human hippocampus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AG059089
NIA NIH HHS - United States
R01 AG076708
NIA NIH HHS - United States
R01 MH117063
NIMH NIH HHS - United States
R03 AG072233
NIA NIH HHS - United States
PubMed
37857775
PubMed Central
PMC10620081
DOI
10.1038/s41593-023-01456-8
PII: 10.1038/s41593-023-01456-8
Knihovny.cz E-zdroje
- MeSH
- elektrická stimulace MeSH
- hipokampus fyziologie MeSH
- hluboká mozková stimulace * metody MeSH
- implantované elektrody MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- mozková kůra MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.
Department of Brain Sciences Imperial College London London UK
Department of Functional and Stereotactic Neurosurgery Timone University Hospital Marseille France
Department of Neurology and Neurosurgery Emory University Hospital Atlanta GA USA
Department of Neurology Harvard Medical School Boston MA USA
Foundation for Research on Information Technologies in Society Zurich Switzerland
Howard Hughes Medical Institute Cambridge MA USA
Institut de Neurosciences des Systèmes Aix Marseille University INSERM Marseille France
School of Psychology Faculty of Health and Medical Sciences University of Surrey Guildford UK
UK Dementia Research Institute Imperial College London London UK
Zobrazit více v PubMed
Silberberg D, Anand NP, Michels K, Kalaria RN. Brain and other nervous system disorders across the lifespan—global challenges and opportunities. Nature. 2015;527:S151–S154. doi: 10.1038/nature16028. PubMed DOI
O’Brien PL, Thomas CP, Hodgkin D, Levit KR, Mark TL. The diminished pipeline for medications to treat mental health and substance use disorders. Psychiatr. Serv. 2014;65:1433–1438. doi: 10.1176/appi.ps.201400044. PubMed DOI PMC
Gravitz L. Drugs: a tangled web of targets. Nature. 2011;475:S9–S11. doi: 10.1038/475S9a. PubMed DOI
Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8:67–81. doi: 10.1016/S1474-4422(08)70291-6. PubMed DOI
Greenberg BD, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive–compulsive disorder: worldwide experience. Mol. Psychiatry. 2010;15:64–79. doi: 10.1038/mp.2008.55. PubMed DOI PMC
Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–660. doi: 10.1016/j.neuron.2005.02.014. PubMed DOI
Scangos KW, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 2021;27:1696–1700. doi: 10.1038/s41591-021-01480-w. PubMed DOI PMC
Lozano AM, et al. A Phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J. Alzheimers Dis. 2016;54:777–787. doi: 10.3233/JAD-160017. PubMed DOI PMC
Kuhn J, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol. Psychiatry. 2015;20:353–360. doi: 10.1038/mp.2014.32. PubMed DOI
Pikov, V. in Implantable Neuroprostheses for Restoring Function (ed. Kilgore, K.) 383–394 (Woodhead Publishing, 2015).
Nitsche MA, Paulus W. Transcranial direct current stimulation—update 2011. Restor. Neurol. Neurosci. 2011;29:463–492. PubMed
Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–199. doi: 10.1016/j.neuron.2007.06.026. PubMed DOI
Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6:1–13. doi: 10.1016/j.brs.2012.02.005. PubMed DOI PMC
Grossman N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169:1029–1041.e16. doi: 10.1016/j.cell.2017.05.024. PubMed DOI PMC
Grossman N. Modulation without surgical intervention. Science. 2018;361:461–462. doi: 10.1126/science.aau4915. PubMed DOI
Zhu Z, et al. Temporal Interference (TI) stimulation boosts functional connectivity in human motor cortex: a comparison study with transcranial direct current stimulation (tDCS) Neural Plast. 2022;2022:7605046. doi: 10.1155/2022/7605046. PubMed DOI PMC
von Conta J, et al. Benchmarking the effects of transcranial temporal interference stimulation (tTIS) in humans. Cortex. 2022;154:299–310. doi: 10.1016/j.cortex.2022.05.017. PubMed DOI
Piao Y, et al. Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies. Brain Sci. 2022;12:1194. doi: 10.3390/brainsci12091194. PubMed DOI PMC
Iacono MI, et al. MIDA: a multimodal imaging-based detailed anatomical model of the human head and neck. PLoS ONE. 2015;10:e0124126. doi: 10.1371/journal.pone.0124126. PubMed DOI PMC
Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 2014;15:655–669. doi: 10.1038/nrn3785. PubMed DOI
Chua EF, Schacter DL, Rand-Giovannetti E, Sperling RA. Evidence for a specific role of the anterior hippocampal region in successful associative encoding. Hippocampus. 2007;17:1071–1080. doi: 10.1002/hipo.20340. PubMed DOI
Wicks RT, et al. Hippocampal CA1 and CA3 neural recording in the human brain: validation of depth electrode placement through high-resolution imaging and electrophysiology. Neurosurg. Focus. 2020;49:E5. doi: 10.3171/2020.4.FOCUS20164. PubMed DOI
Angenstein F. The actual intrinsic excitability of granular cells determines the ruling neurovascular coupling mechanism in the rat dentate gyrus. J. Neurosci. 2014;34:8529–8545. doi: 10.1523/JNEUROSCI.0472-14.2014. PubMed DOI PMC
Li LM, et al. Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Hum. Brain Mapp. 2019;40:904–915. doi: 10.1002/hbm.24420. PubMed DOI PMC
Sperling R, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. NeuroImage. 2003;20:1400–1410. doi: 10.1016/S1053-8119(03)00391-4. PubMed DOI PMC
Zeineh MM, Engel SA, Thompson PM, Bookheimer SY. Dynamics of the hippocampus during encoding and retrieval of face–name pairs. Science. 2003;299:577–580. doi: 10.1126/science.1077775. PubMed DOI
Herweg NA, Solomon EA, Kahana MJ. Theta oscillations in human memory. Trends Cogn. Sci. 2020;24:208–227. doi: 10.1016/j.tics.2019.12.006. PubMed DOI PMC
Otten LJ, Henson RN, Rugg MD. State-related and item-related neural correlates of successful memory encoding. Nat. Neurosci. 2002;5:1339–1344. doi: 10.1038/nn967. PubMed DOI
Wang JX, et al. Targeted enhancement of cortical–hippocampal brain networks and associative memory. Science. 2014;345:1054–1057. doi: 10.1126/science.1252900. PubMed DOI PMC
Eldridge LL, Engel SA, Zeineh MM, Bookheimer SY, Knowlton BJ. A dissociation of encoding and retrieval processes in the human hippocampus. J. Neurosci. 2005;25:3280–3286. doi: 10.1523/JNEUROSCI.3420-04.2005. PubMed DOI PMC
Angenstein F. The role of ongoing neuronal activity for baseline and stimulus-induced BOLD signals in the rat hippocampus. NeuroImage. 2019;202:116082. doi: 10.1016/j.neuroimage.2019.116082. PubMed DOI
Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 2012;13:713–726. doi: 10.1038/nrn3338. PubMed DOI
Ritchey M, Libby LA, Ranganath C. Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog. Brain Res. 2015;219:45–64. doi: 10.1016/bs.pbr.2015.04.001. PubMed DOI
Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: a systematic review. Cortex. 2022;147:112–139. doi: 10.1016/j.cortex.2021.12.001. PubMed DOI
Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, 1932).
James, W. Psychology: Briefer Course (Macmillan and Co, 1892).
Finn B. A framework of episodic updating: an account of memory updating after retrieval. Psychol. Learn. Motiv. 2017;67:173–211. doi: 10.1016/bs.plm.2017.03.006. DOI
Sunshine MD, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun. Biol. 2021;4:107. doi: 10.1038/s42003-020-01604-x. PubMed DOI PMC
Lee S, Lee C, Park J, Im CH. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models. Sci. Rep. 2020;10:11730. doi: 10.1038/s41598-020-68660-5. PubMed DOI PMC
Rampersad S, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study. NeuroImage. 2019;202:116124. doi: 10.1016/j.neuroimage.2019.116124. PubMed DOI PMC
Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 2010;30:15067–15079. doi: 10.1523/JNEUROSCI.2059-10.2010. PubMed DOI PMC
Johnson L, et al. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 2020;6:eaaz2747. doi: 10.1126/sciadv.aaz2747. PubMed DOI PMC
Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl Acad. Sci. USA. 2019;116:5747–5755. doi: 10.1073/pnas.1815958116. PubMed DOI PMC
Opitz A, et al. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci. Rep. 2016;6:31236. doi: 10.1038/srep31236. PubMed DOI PMC
Sperling RA, et al. Encoding novel face–name associations: a functional MRI study. Hum. Brain Mapp. 2001;14:129–139. doi: 10.1002/hbm.1047. PubMed DOI PMC
Zeithamova D, de Araujo Sanchez MA, Adke A. Trial timing and pattern-information analyses of fMRI data. NeuroImage. 2017;153:221–231. doi: 10.1016/j.neuroimage.2017.04.025. PubMed DOI
Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929. doi: 10.1126/science.1099745. PubMed DOI
Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321:53–57. doi: 10.1126/science.1149381. PubMed DOI PMC
Levy WB, Steward O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 1979;175:233–245. doi: 10.1016/0006-8993(79)91003-5. PubMed DOI
Hillman EM. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 2014;37:161–181. doi: 10.1146/annurev-neuro-071013-014111. PubMed DOI PMC
Fellner MC, et al. Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation. PLoS Biol. 2019;17:e3000403. doi: 10.1371/journal.pbio.3000403. PubMed DOI PMC
Greenberg JA, Burke JF, Haque R, Kahana MJ, Zaghloul KA. Decreases in theta and increases in high frequency activity underlie associative memory encoding. NeuroImage. 2015;114:257–263. doi: 10.1016/j.neuroimage.2015.03.077. PubMed DOI PMC
Hanslmayr S, Staresina BP, Bowman H. Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum. Trends Neurosci. 2016;39:16–25. doi: 10.1016/j.tins.2015.11.004. PubMed DOI PMC
Solomon EA, et al. Dynamic theta networks in the human medial temporal lobe support episodic memory. Curr. Biol. 2019;29:1100–1111 e1104. doi: 10.1016/j.cub.2019.02.020. PubMed DOI PMC
Shaw K, et al. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat. Commun. 2021;12:3190. doi: 10.1038/s41467-021-23508-y. PubMed DOI PMC
Ekstrom AD. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philos. Trans. R. Soc. Lond. B. 2021;376:20190634. doi: 10.1098/rstb.2019.0634. PubMed DOI PMC
Hill PF, et al. Distinct neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex. J. Neurosci. 2021;41:6343–6352. doi: 10.1523/JNEUROSCI.0278-21.2021. PubMed DOI PMC
Esmaeilpour, Z. et al. Limited sensitivity of hippocampal synaptic function or network oscillations to unmodulated kilohertz electric fields. eNeuro7, ENEURO.0368-20.2020 (2020). PubMed PMC
Loh A, et al. Probing responses to deep brain stimulation with functional magnetic resonance imaging. Brain Stimul. 2022;15:683–694. doi: 10.1016/j.brs.2022.03.009. PubMed DOI
Bikson M, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–661. doi: 10.1016/j.brs.2016.06.004. PubMed DOI PMC
O’Connell NE, et al. Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2 mA. PLoS ONE. 2012;7:e47514. doi: 10.1371/journal.pone.0047514. PubMed DOI PMC
Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 2011;12:585–601. doi: 10.1038/nrn3085. PubMed DOI PMC
Huijbers W, et al. Amyloid-beta deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain. 2015;138:1023–1035. doi: 10.1093/brain/awv007. PubMed DOI PMC
Miller SL, et al. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J. Neurol. Neurosurg. Psychiatry. 2008;79:630–635. doi: 10.1136/jnnp.2007.124149. PubMed DOI PMC
Tregellas JR. Neuroimaging biomarkers for early drug development in schizophrenia. Biol. Psychiatry. 2014;76:111–119. doi: 10.1016/j.biopsych.2013.08.025. PubMed DOI PMC
Jefferys JG. Advances in understanding basic mechanisms of epilepsy and seizures. Seizure. 2010;19:638–646. doi: 10.1016/j.seizure.2010.10.026. PubMed DOI
Ma DS, Correll J, Wittenbrink B. The Chicago face database: a free stimulus set of faces and norming data. Behav. Res Methods. 2015;47:1122–1135. doi: 10.3758/s13428-014-0532-5. PubMed DOI
Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Annu Int Conf. IEEE Eng. Med Biol. Soc. 2015;2015:222–225. PubMed
Nielsen JD, et al. Automatic skull segmentation from MR images for realistic volume conductor models of the head: assessment of the state-of-the-art. NeuroImage. 2018;174:587–598. doi: 10.1016/j.neuroimage.2018.03.001. PubMed DOI
Bossetti CA, Birdno MJ, Grill WM. Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. J. Neural Eng. 2008;5:44–53. doi: 10.1088/1741-2560/5/1/005. PubMed DOI
McCann H, Pisano G, Beltrachini L. Variation in reported human head tissue electrical conductivity values. Brain Topogr. 2019;32:825–858. doi: 10.1007/s10548-019-00710-2. PubMed DOI PMC
Hasgall, P. A., et al. IT’IS database for thermal and electromagnetic parameters of biological tissues. Version 4.1 (2022); https://itis.swiss/database
Non-invasive temporal interference electrical stimulation of the human hippocampus, oSPARC (2023); https://osparc.io/study/9641ba42-c4db-11ed-b8b9-02420a0b5f22 PubMed PMC
Brainard DH. The psychophysics toolbox. Spat. Vis. 1997;10:433–436. doi: 10.1163/156856897X00357. PubMed DOI
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
Bürkner P-C. brms: an R package for Bayesian multilevel models using stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI
Lo S, Andrews S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015;6:1171. doi: 10.3389/fpsyg.2015.01171. PubMed DOI PMC
Christensen, R. H. B. ordinal—regression models for ordinal data. R package version 2019 12-10https://CRAN.R-project.org/package=ordinal (2019).
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:48. doi: 10.18637/jss.v067.i01. DOI
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82:26. doi: 10.18637/jss.v082.i13. DOI
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.5https://CRAN.R-project.org/package=DHARMa (2022).
Hothorn T, Hornik K, van de Wiel MA, Zeileis A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 2008;28:1–23. doi: 10.18637/jss.v028.i08. PubMed DOI
Ekhtiari H, et al. A checklist for assessing the methodological quality of concurrent tES–fMRI studies (ContES checklist): a consensus study and statement. Nat. Protoc. 2022;17:596–617. doi: 10.1038/s41596-021-00664-5. PubMed DOI PMC
Greinacher R, Buhot L, Moller L, Learmonth G. The time course of ineffective sham-blinding during low-intensity (1 mA) transcranial direct current stimulation. Eur. J. Neurosci. 2019;50:3380–3388. doi: 10.1111/ejn.14497. PubMed DOI PMC
Brown BM, Hall P, Young GA. The smoothed median and the bootstrap. Biometrika. 2001;88:519–534. doi: 10.1093/biomet/88.2.519. DOI
Wolodzko, T. Kernelboot: smoothed bootstrap and random generation from kernel densities. R. package version0.1.10 (2023); https://CRAN.R-project.org/package=kernelboot
Fischl B. FreeSurfer. NeuroImage. 2012;62:774–781. doi: 10.1016/j.neuroimage.2012.01.021. PubMed DOI PMC
Iglesias JE, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage. 2015;115:117–137. doi: 10.1016/j.neuroimage.2015.04.042. PubMed DOI PMC
Collin SH, Milivojevic B, Doeller CF. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 2015;18:1562–1564. doi: 10.1038/nn.4138. PubMed DOI PMC
Cooper RA, Ritchey M. Cortico-hippocampal network connections support the multidimensional quality of episodic memory. eLife. 2019;8:e45591. doi: 10.7554/eLife.45591. PubMed DOI PMC
Libby LA, Ekstrom AD, Ragland JD, Ranganath C. Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J. Neurosci. 2012;32:6550–6560. doi: 10.1523/JNEUROSCI.3711-11.2012. PubMed DOI PMC
Ritchey M, Yonelinas AP, Ranganath C. Functional connectivity relationships predict similarities in task activation and pattern information during associative memory encoding. J. Cogn. Neurosci. 2014;26:1085–1099. doi: 10.1162/jocn_a_00533. PubMed DOI
Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. NeuroVault (2015); https://neurovault.org/collections/3731/ PubMed PMC
Ritchey M, Montchal ME, Yonelinas AP, Ranganath C. Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. eLife. 2015;4:e05025. doi: 10.7554/eLife.05025. PubMed DOI PMC
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Smith SM. Overview of fMRI analysis. Br. J. Radiol. 2004;77:S167–S175. doi: 10.1259/bjr/33553595. PubMed DOI
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–841. doi: 10.1006/nimg.2002.1132. PubMed DOI
Smith SM. Fast robust automated brain extraction. Hum. Brain Mapp. 2002;17:143–155. doi: 10.1002/hbm.10062. PubMed DOI PMC
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC
McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage. 2012;61:1277–1286. doi: 10.1016/j.neuroimage.2012.03.068. PubMed DOI PMC
Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport. 1998;9:3735–3739. doi: 10.1097/00001756-199811160-00030. PubMed DOI
Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. NeuroImage. 2003;20:1052–1063. doi: 10.1016/S1053-8119(03)00435-X. PubMed DOI
Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM. Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage. 2004;21:1732–1747. doi: 10.1016/j.neuroimage.2003.12.023. PubMed DOI
Non-invasive stimulation for treating cognitive impairment in Alzheimer disease
Non-invasive temporal interference electrical stimulation of the human hippocampus