Noninvasive Temporal Interference Stimulation of the Subthalamic Nucleus in Parkinson's Disease Reduces Beta Activity

. 2025 Jun ; 40 (6) : 1051-1060. [epub] 20250409

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40202094

Grantová podpora
LX22NPO5107 The Ministry of Education, Youth and Sports of the Czech Republic; European Union - Next Generation EU
NU21-04-00445 The Ministry of Health of the Czech Republic
GF21-13462L The Czech Science Foundation
101088623 European Union's Horizon Europe
101101040 European Union's Horizon Europe

BACKGROUND: Temporal interference stimulation (TIS) is a novel noninvasive electrical stimulation technique to focally modulate deep brain regions; a minimum of two high-frequency signals (f1 and f2 > 1 kHz) interfere to create an envelope-modulated signal at a deep brain target with the frequency of modulation equal to the difference frequency: Δf = |f2 - f1|. OBJECTIVE: The goals of this study were to verify the capability of TIS to modulate the subthalamic nucleus (STN) with Δf and to compare the effect of TIS and conventional deep brain stimulation (DBS) on the STN beta oscillations in patients with Parkinson's disease (PD). METHODS: DBS leads remained externalized after implantation, allowing local field potentials (LFPs) recordings in eight patients with PD. TIS was performed initially by two pairs (f1 = 9.00 kHz; f2 = 9.13 kHz, 4 mA peak-peak per pair maximum) of scalp electrodes placed in temporoparietal regions to focus the envelope signal maximum (Δf = 130 Hz) at the motor part of the STN target. RESULTS: The comparison between the baseline LFPs and recordings after TIS and conventional DBS sessions showed substantial suppression of high beta power peak after both types of stimulation in all patients. CONCLUSIONS: TIS has the potential to effectively modulate the STN and reduce the beta oscillatory activity in a completely noninvasive manner, as is traditionally possible only with intracranial DBS. Future studies should confirm the clinical effectiveness of TIS and determine whether TIS could be used to identify optimal DBS candidates and individualize DBS targets. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Komentář v

10.1002/mds.29967 PubMed

Zobrazit více v PubMed

von Conta J, Kasten FH, Ćurčić‐Blake B, Aleman A, Thielscher A, Herrmann CS. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS). Sci Rep 2021;11(1):20357. 10.1038/s41598-021-99749-0 PubMed DOI PMC

Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 2017;169(6):1029–1041.e16. 10.1016/j.cell.2017.05.024 PubMed DOI PMC

Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 2000;23(5):216–222. 10.1016/S0166-2236(00)01547-2 PubMed DOI

Mirzakhalili E, Barra B, Capogrosso M, Lempka SF. Biophysics of temporal interference stimulation. Cell Syst 2020;11(6):557–572.e5. 10.1016/j.cels.2020.10.004 PubMed DOI

Hill AV, Katz B, Solandt D. Nerve excitation by alternating current. Proc R Soc Lond B Biol Sci 1936;121(821):74–133. 10.1098/rspb.1936.0053 DOI

Violante IR, Alania K, Cassarà AM, et al. Non‐invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci 2023;26(11):1994–2004. 10.1038/s41593-023-01456-8 PubMed DOI PMC

Wessel MJ, Beanato E, Popa T, et al. Noninvasive theta‐burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023;26(11):2005–2016. 10.1038/s41593-023-01457-7 PubMed DOI PMC

Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 2009;8(1):67–81. 10.1016/S1474-4422(08)70291-6 PubMed DOI

Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 2019;15(3):148–160. 10.1038/s41582-018-0128-2 PubMed DOI PMC

Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci 2007;30(7):357–364. 10.1016/j.tins.2007.05.004 PubMed DOI

Kühn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8‐35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur J Neurosci 2006;23(7):1956–1960. 10.1111/j.1460-9568.2006.04717.x PubMed DOI

Chen CC, Hsu YT, Chan HL, et al. Complexity of subthalamic 13–35Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson's disease. Exp Neurol 2010;224(1):234–240. 10.1016/j.expneurol.2010.03.015 PubMed DOI

Oswal A, Beudel M, Zrinzo L, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. Brain 2016;139(5):1482–1496. 10.1093/brain/aww048 PubMed DOI PMC

Steiner LA, Neumann WJ, Staub‐Bartelt F, et al. Subthalamic beta dynamics mirror parkinsonian bradykinesia months after neurostimulator implantation. Mov Disord 2017;32(8):1183–1190. 10.1002/mds.27068 PubMed DOI PMC

Horn A, Kühn AA. Lead‐DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 2015;107:127–135. 10.1016/j.neuroimage.2014.12.002 PubMed DOI

Ewert S, Plettig P, Li N, et al. Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage 2018;170:271–282. 10.1016/j.neuroimage.2017.05.015 PubMed DOI

Horn A, Neumann WJ, Degen K, Schneider GH, Kühn AA. Toward an electrophysiological “sweet spot” for deep brain stimulation in the subthalamic nucleus. Hum Brain Mapp 2017;38(7):3377–3390. 10.1002/hbm.23594 PubMed DOI PMC

Karimi F, Cassarà AM, Capstick M, Kuster N, Neufeld E. Safety of non‐invasive brain stimulation in patients with implants: a computational risk assessment. J Neural Eng 2024;5:1‐46. 10.1088/1741-2552/ad8efa PubMed DOI

Hasgall P, Di Gennaro F, Baumgartner C, et al. IT'IS database for thermal and electromagnetic parameters of biological tissues. Version 4.1; 2022. 10.13099/VIP21000-04-1. DOI

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011;2011:156869. 10.1155/2011/156869 PubMed DOI PMC

Wennberg RA, Lozano AM. Intracranial volume conduction of cortical spikes and sleep potentials recorded with deep brain stimulating electrodes. Clin Neurophysiol 2003;114(8):1403–1418. 10.1016/S1388-2457(03)00152-4 PubMed DOI

Wennberg R, Lozano AM. Restating the importance of bipolar recording in subcortical nuclei. Clin Neurophysiol 2006;117(2):474–475. 10.1016/j.clinph.2005.09.020 PubMed DOI

Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an open signal processing software platform. Physiol Meas 2016;37(7):N38–N48. 10.1088/0967-3334/37/7/N38 PubMed DOI

Donoghue T, Haller M, Peterson EJ, et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci 2020;23(12):1655–1665. 10.1038/s41593-020-00744-x PubMed DOI PMC

Grossman N, Okun MS, Boyden ES. Translating temporal interference brain stimulation to treat neurological and psychiatric conditions. JAMA Neurol 2018;75(11):1307. 10.1001/jamaneurol.2018.2760 PubMed DOI

Rampersad S, Roig‐Solvas B, Yarossi M, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study. Neuroimage 2019;202:116124. 10.1016/j.neuroimage.2019.116124 PubMed DOI PMC

Luff CE, Dzialecka P, Acerbo E, Williamson A, Grossman N. Pulse‐width modulated temporal interference (PWM‐TI) brain stimulation. Brain Stimul 2024;17(1):92–103. 10.1016/j.brs.2023.12.010 PubMed DOI

Acerbo E, Jegou A, Luff C, et al. Focal non‐invasive deep‐brain stimulation with temporal interference for the suppression of epileptic biomarkers. Front Neurosci 2022;16:945221. 10.3389/fnins.2022.945221 PubMed DOI PMC

Liu R, Zhu G, Wu Z, et al. Temporal interference stimulation targets deep primate brain. Neuroimage 2024;291:120581. 10.1016/j.neuroimage.2024.120581 PubMed DOI

Missey F, Rusina E, Acerbo E, et al. Orientation of temporal interference for non‐invasive deep brain stimulation in epilepsy. Front Neurosci 2021;15:633988. 10.3389/fnins.2021.633988 PubMed DOI PMC

Kwak Y, Lim S, Cho HU, et al. Effect of temporal interference electrical stimulation on phasic dopamine release in the striatum. Brain Stimul 2023;16(5):1377–1383. 10.1016/j.brs.2023.09.012 PubMed DOI

Esmaeilpour Z, Kronberg G, Reato D, Parra LC, Bikson M. Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Brain Stimul 2021;14(1):55–65. 10.1016/j.brs.2020.11.007 PubMed DOI PMC

Vieira PG, Krause MR, Pack CC. Temporal interference stimulation disrupts spike timing in the primate brain. Nat Commun 2024;15(1):4558. 10.1038/s41467-024-48962-2 PubMed DOI PMC

Yang C, Xu Y, Feng X, et al. Transcranial temporal interference stimulation of the right Globus pallidus in Parkinson's disease. Mov Disord 2025;40(6):1061–1069. 10.1002/mds.29967 PubMed DOI PMC

Brown P. Bad oscillations in Parkinson's disease. Parkinson's Disease and Related Disorders. Vienna:Springer; 2006:27–30. 10.1007/978-3-211-45295-0_6. PubMed DOI

Androulidakis AG, Kuhn AA, Chu Chen C, et al. Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson's disease. Brain 2007;130(2):457–468. 10.1093/brain/awl358 PubMed DOI

Alegre M, Alonso‐Frech F, Rodríguez‐Oroz MC, et al. Movement‐related changes in oscillatory activity in the human subthalamic nucleus: ipsilateral vs. contralateral movements. Eur J Neurosci 2005;22(9):2315–2324. 10.1111/j.1460-9568.2005.04409.x PubMed DOI

Stanslaski S, Summers RLS, Tonder L, et al. Sensing data and methodology from the adaptive DBS algorithm for personalized therapy in Parkinson's disease (ADAPT‐PD) clinical trial. NPJ Parkinsons Dis. 2024;10(1):174. 10.1038/s41531-024-00772-5 PubMed DOI PMC

Oehrn CR, Cernera S, Hammer LH, et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson's disease: a blinded randomized feasibility trial. Nat Med 2024;30(11):3345–3356. 10.1038/s41591-024-03196-z PubMed DOI PMC

Mathiopoulou V, Lofredi R, Feldmann LK, et al. Modulation of subthalamic beta oscillations by movement, dopamine, and deep brain stimulation in Parkinson's disease. NPJ Parkinsons Dis 2024;10(1):77. 10.1038/s41531-024-00693-3 PubMed DOI PMC

Hummel FC, Wessel MJ. Non‐invasive deep brain stimulation: interventional targeting of deep brain areas in neurological disorders. Nat Rev Neurol 2024;20(8):451–452. 10.1038/s41582-024-00990-8 PubMed DOI

de Hemptinne C, Wang DD, Miocinovic S, Chen W, Ostrem JL, Starr PA. Pallidal thermolesion unleashes gamma oscillations in the motor cortex in Parkinson's disease. Mov Disord 2019;34(6):903–911. 10.1002/mds.27658 PubMed DOI

Vassiliadis P, Stiennon E, Windel F, Wessel MJ, Beanato E, Hummel FC. Safety, tolerability and blinding efficiency of non‐invasive deep transcranial temporal interference stimulation: first experience from more than 250 sessions. J Neural Eng 2024;21(2):e024001. 10.1088/1741-2552/ad2d32 PubMed DOI

Krauss JK, Lipsman N, Aziz T, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2021;17(2):75–87. 10.1038/s41582-020-00426-z PubMed DOI PMC

Ahtiainen A, Leydolph L, Tanskanen JMA, Hunold A, Haueisen J, Hyttinen JAK. Electric field temporal interference stimulation of neurons PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...