Residual Stress Distribution in Dievar Tool Steel Bars Produced by Conventional Additive Manufacturing and Rotary Swaging Processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSI-S-23-8231
Brno University of Technology
CZ.02.01.01/00/22_008/0004631
Ministry of Education Youth and Sports
LM2023041
Ministry of Education Youth and Sports
RVO 61389005
Czech Academy of Sciences, Nuclear Physics Institute
PubMed
39685142
PubMed Central
PMC11642031
DOI
10.3390/ma17235706
PII: ma17235706
Knihovny.cz E-zdroje
- Klíčová slova
- Dievar, SLM, additive manufacturing, hot work tool steel, neutron diffraction, residual stress, rotary swaging, selective laser melting, tool steel,
- Publikační typ
- časopisecké články MeSH
The impact of manufacturing strategies on the development of residual stresses in Dievar steel is presented. Two fabrication methods were investigated: conventional ingot casting and selective laser melting as an additive manufacturing process. Subsequently, plastic deformation in the form of hot rotary swaging at 900 °C was applied. Residual stresses were measured using neutron diffraction. Microstructural and phase analysis, precipitate characterization, and hardness measurement-carried out to complement the investigation-showed the microstructure improvement by rotary swaging. The study reveals that the manufacturing method has a significant effect on the distribution of residual stresses in the bars. The results showed that conventional ingot casting resulted in low levels of residual stresses (up to ±200 MPa), with an increase in hardness after rotary swaging from 172 HV1 to 613 HV1. SLM-manufactured bars developed tensile hoop and axial residual stresses in the vicinity of the surface and large compressive axial stresses (-600 MPa) in the core due to rapid cooling. The subsequent thermomechanical treatment via rotary swaging effectively reduced both the surface tensile (to approximately +200 MPa) and the core compressive residual stresses (to -300 MPa). Moreover, it resulted in a predominantly hydrostatic stress character and a reduction in von Mises stresses, offering relatively favorable residual stress characteristics and, therefore, a reduction in the risk of material failure. In addition to the significantly improved stress profile, rotary swaging contributed to a fine grain (3-5 µm instead of 10-15 µm for the conventional sample) and increased the hardness of the SLM samples from 560 HV1 to 606 HV1. These insights confirm the utility of rotary swaging as a post-processing technique that not only reduces residual stresses but also improves the microstructural and mechanical properties of additively manufactured components.
Faculty of Mathematics and Physics Charles University Ke Karlovu 2027 3 121 16 Prague Czech Republic
Nuclear Physics Institute of the Czech Academy of Sciences Husinec Řež 130 250 68 Řež Czech Republic
Zobrazit více v PubMed
Lu Y., Wu S., Gan Y., Huang T., Yang C., Junjie L., Lin J. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt. Laser Technol. 2015;75:197–206. doi: 10.1016/j.optlastec.2015.07.009. DOI
Valdez M., Kozuch C., Faierson E.J., Jasiuk I. Induced porosity in Super Alloy 718 through the laser additive manufacturing process: Microstructure and mechanical properties. J. Alloys Compd. 2017;725:757–764. doi: 10.1016/j.jallcom.2017.07.198. DOI
Salmi A., Atzeni E., Iuliano L., Galati M. Experimental Analysis of Residual Stresses on AlSi10Mg Parts Produced by Means of Selective Laser Melting (SLM) Procedia CIRP. 2017;62:458–463. doi: 10.1016/j.procir.2016.06.030. DOI
Hauk V., Behnken H. Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation, Application, Assessment. Elsevier; Amsterdam, The Netherlands: New York, NY, USA: 1997.
Sasaki T., Takahashi S., Kanematsu Y., Satoh Y., Iwafuchi K., Ishida M., Morii Y. Measurement of residual stresses in rails by neutron diffraction. Wear. 2008;265:1402–1407. doi: 10.1016/j.wear.2008.04.047. DOI
Harun W., Manam N., Kamariah M., Sharif S., Zulkifly A., Ahmad I., Miura H. A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 2018;331:74–97. doi: 10.1016/j.powtec.2018.03.010. DOI
Paolini A., Kollmannsberger S., Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019;30:100894. doi: 10.1016/j.addma.2019.100894. DOI
Fette M., Sander P., Wulfsberg J., Zierk H., Herrmann A., Stoess N. Optimized and Cost-efficient Compression Molds Manufactured by Selective Laser Melting for the Production of Thermoset Fiber Reinforced Plastic Aircraft Components. Procedia CIRP. 2015;35:25–30. doi: 10.1016/j.procir.2015.08.082. DOI
Buchanan C., Gardner L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng. Struct. 2019;180:332–348. doi: 10.1016/j.engstruct.2018.11.045. DOI
Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC
Vundru C., Singh R., Yan W., Karagadde S. The Effect of Martensitic Transformation on the Evolution of Residual Stresses and Identification of the Critical Linear Mass Density in Direct Laser Metal Deposition–Based Repair. J. Manuf. Sci. Eng. 2020;142:71002. doi: 10.1115/1.4046828. DOI
Parry L., Ashcroft I., Wildman R. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016;12:1–15. doi: 10.1016/j.addma.2016.05.014. DOI
Balbaa M., Mekhiel S., Elbestawi M., McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater. Des. 2020;193:108818. doi: 10.1016/j.matdes.2020.108818. DOI
Yadroitsev I., Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 2015;10:67–76. doi: 10.1080/17452759.2015.1026045. DOI
Kruth J., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI
Mukherjee T., Zhang W., DebRoy T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017;126:360–372. doi: 10.1016/j.commatsci.2016.10.003. DOI
Mishurova T., Cabeza S., Artzt K., Haubrich J., Klaus M., Genzel C., Requena G., Bruno G. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials. 2017;10:348. doi: 10.3390/ma10040348. PubMed DOI PMC
Simson T., Emmel A., Dwars A., Böhm J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017;17:183–189. doi: 10.1016/j.addma.2017.07.007. DOI
Ulbricht A., Altenburg S.J., Sprengel M., Sommer K., Mohr G., Fritsch T., Mishurova T., Serrano-Munoz I., Evans A., Hofmann M., et al. Separation of the formation mechanisms of residual stresses in lpbf 316l. Metals. 2020;10:1234. doi: 10.3390/met10091234. DOI
Liscic B., Tensi H.M., Canale L.C., Totten G.E. Quenching Theory and Technology. 2nd ed. CRC Press; Boca Raton, FL, USA: 2010.
Lozano D.E., Totten G.E., Bedolla-Gil Y., Guerrero-Mata M., Carpio M., Martinez-Cazares G.M. X-ray Determination of compressive residual stresses in spring steel generated by high-speed water quenching. Materials. 2019;12:1154. doi: 10.3390/ma12071154. PubMed DOI PMC
Zhao X., Munroe P., Habibi D., Xie Z. Roles of compressive residual stress in enhancing the corrosion resistance of nano nitride composite coatings on steel. J. Asian Ceram. Soc. 2013;1:86–94. doi: 10.1016/j.jascer.2013.03.002. DOI
Dunbar A., Denlinger E., Heigel J., Michaleris P., Guerrier P., Martukanitz R., Simpson T. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process. Addit. Manuf. 2016;12:25–30. doi: 10.1016/j.addma.2016.04.007. DOI
Craeghs T., Clijsters S., Kruth J.-P., Bechmann F., Ebert M.-C. Detection of Process Failures in Layerwise Laser Melting with Optical Process Monitoring. Phys. Procedia. 2012;39:753–759. doi: 10.1016/j.phpro.2012.10.097. DOI
Clijsters S., Craeghs T., Buls S., Kempen K., Kruth J.-P. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int. J. Adv. Manuf. Technol. 2014;75:1089–1101. doi: 10.1007/s00170-014-6214-8. DOI
Santhoshsarang D.M., Divya K., Telasang G., Soundarapandian S., Bathe R., Padmanabham G. Additively Manufactured High-Performance Conformally Cooled H13 Tool Steel Die Insert for Pressure Die Casting. Trans. Indian Natl. Acad. Eng. (Online) 2021;6:1037–1048. doi: 10.1007/s41403-021-00233-y. DOI
Sjöström J., Bergström J. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. J. Mater. Process. Technol. 2004;153–154:1089–1096. doi: 10.1016/j.jmatprotec.2004.04.158. DOI
Xiang S., Wu R., Li W., Hu T., Huang S. Improved Red Hardness and Toughness of Hot Work Die Steel through Tungsten Alloying. J. Mater. Eng. Perform. 2021;30:6146–6159. doi: 10.1007/s11665-021-05793-2. DOI
Samuel A., Prabhu K.N. Residual Stress and Distortion during Quench Hardening of Steels: A Review. J. Mater. Eng. Perform. 2022;31:5161–5188. doi: 10.1007/s11665-022-06667-x. DOI
Macherauch E., Vöhringer O. Theory and Technology of Quenching. Springer; Berlin/Heidelberg, Germany: 1992. Residual Stresses After Quenching; pp. 117–181. DOI
Furrer D.U., Semiatin S.L. ASM Handbook, Volume 22B—Metals Process Simulation. ASM International; Detroit, MI, USA: 2010. Modeling of Quenching, Residual-Stress Formation, and Quench Cracking; pp. 547–599.
Macchi J., Gaudez S., Geandier G., Teixeira J., Denis S., Bonnet F., Allain S.Y. Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy X-Ray diffraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;800:140249. doi: 10.1016/j.msea.2020.140249. DOI
Ding W., Liu Y., Xie J., Sun L., Liu T., Yuan F., Pan J. Effect of carbide precipitation on the evolution of residual stress during tempering. Metals. 2019;9:709. doi: 10.3390/met9060709. DOI
Chen Y., Ding W., Liang L., Liu X., Wang H., Xiao S., Chen Q., Yang Y., Yang W. Intervention mechanism of carbide precipitation during tempering and its impact on residual stress and mechanical properties of wear-resistant steels. Ironmak. Steelmak. 2024;51:502–512. doi: 10.1177/03019233241250136. DOI
Kantaros A., Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater. Des. 2013;50:44–50. doi: 10.1016/j.matdes.2013.02.067. DOI
Kantaros A., Karalekas D. Conference Proceedings of the Society for Experimental Mechanics Series. Volume 8. Springer International Publishing; Cham, Switzerland: 2014. FBG Based in Situ Characterization of Residual Strains in FDM Process; pp. 333–337. DOI
Khorasani M., Ghasemi A., Rolfe B., Gibson I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022;28:87–100. doi: 10.1108/RPJ-01-2021-0009. DOI
Masaylo D., Igoshin S., Popovich A., Orlov A., Kim A., Popovich V. Microstructural and Hardness Behavior of H13 Tool Steel Manufactured by Ultrasound-Assisted Laser-Directed Energy Deposition. Metals. 2022;12:450. doi: 10.3390/met12030450. DOI
Yuan M., Cao Y., Karamchedu S., Hosseini S., Yao Y., Berglund J., Liu L., Nyborg L. Characteristics of a modified H13 hot-work tool steel fabricated by means of laser beam powder bed fusion. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022;831:142322. doi: 10.1016/j.msea.2021.142322. DOI
Zhu Y., Chen J., Li X. Numerical Simulation of Thermal Field and Performance Study on H13 Die Steel-Based Wire Arc Additive Manufacturing. Metals. 2023;13:1484. doi: 10.3390/met13081484. DOI
Yan J.J., Zheng D.L., Li H.X., Jia X., Sun J.F., Li Y.L., Qian M., Yan M. Selective laser melting of H13: Microstructure and residual stress. J. Mater. Sci. 2017;52:12476–12485. doi: 10.1007/s10853-017-1380-3. DOI
Sander J., Hufenbach J., Giebeler L., Wendrock H., Kühn U., Eckert J. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater. Des. 2016;89:335–341. doi: 10.1016/j.matdes.2015.09.148. DOI
Gallmeyer T.G., Moorthy S., Kappes B.B., Mills M.J., Amin-Ahmadi B., Stebner A.P. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Addit. Manuf. 2020;31:100977. doi: 10.1016/j.addma.2019.100977. DOI
Voisin T., Forien J.-B., Perron A., Aubry S., Bertin N., Samanta A., Baker A., Wang Y.M. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater. 2021;203:116476. doi: 10.1016/j.actamat.2020.11.018. DOI
Pröbstle M., Neumeier S., Hopfenmüller J., Freund L., Niendorf T., Schwarze D., Göken M. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2016;674:299–307. doi: 10.1016/j.msea.2016.07.061. DOI
Vrancken B., Thijs L., Kruth J.-P., Van Humbeeck J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022. DOI
Charmi A., Falkenberg R., Ávila L., Mohr G., Sommer K., Ulbricht A., Sprengel M., Neumann R.S., Skrotzki B., Evans A. Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;799:140154. doi: 10.1016/j.msea.2020.140154. DOI
Zhou Y.H., Li W.P., Wang D.W., Zhang L., Ohara K., Shen J., Ebel T., Yan M. Selective Laser Melting Enabled Additive Manufacturing of Ti-22Al-25Nb Intermetallic: Excellent Combination of Strength and Ductility, and Unique Microstructural Features Associated. Acta Mater. 2019;173:117–129. doi: 10.1016/j.actamat.2019.05.008. DOI
Seede R., Shoukr D., Zhang B., Whitt A., Gibbons S., Flater P., Elwany A., Arroyave R., Karaman I. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Mater. 2020;186:199–214. doi: 10.1016/j.actamat.2019.12.037. DOI
Boes J., Röttger A., Theisen W., Cui C., Uhlenwinkel V., Schulz A., Zoch H.-W., Stern F., Tenkamp J., Walther F. Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel. Addit. Manuf. 2020;34:101379. doi: 10.1016/j.addma.2020.101379. DOI
Saeidi K., Zapata D.L., Lofaj F., Kvetkova L., Olsen J., Shen Z., Akhtar F. Ultra-high strength martensitic 420 stainless steel with high ductility. Addit. Manuf. 2019;29:100803. doi: 10.1016/j.addma.2019.100803. DOI
Bartlett J.L., Li X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019;27:131–149. doi: 10.1016/j.addma.2019.02.020. DOI
Chao Q., Thomas S., Birbilis N., Cizek P., Hodgson P.D., Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;821:141611. doi: 10.1016/j.msea.2021.141611. DOI
Jaber H., Kónya J., Kulcsár K., Kovács T. Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting. Materials. 2022;15:1978. doi: 10.3390/ma15051978. PubMed DOI PMC
Mercelis P., Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI
Levkulich N., Semiatin S., Gockel J., Middendorf J., DeWald A., Klingbeil N. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 2019;28:475–484. doi: 10.1016/j.addma.2019.05.015. DOI
Serrano-Munoz I., Fritsch T., Mishurova T., Trofimov A., Apel D., Ulbricht A., Kromm A., Hesse R., Evans A., Bruno G. On the interplay of microstructure and residual stress in LPBF IN718. J. Mater. Sci. 2021;56:5845–5867. doi: 10.1007/s10853-020-05553-y. DOI
Pertuz-Comas A.D., González-Estrada O.A., Martínez-Díaz E., Villegas-Bermúdez D.F., Díaz-Rodríguez J.G. Strain-Based Fatigue Experimental Study on Ti–6Al–4V Alloy Manufactured by Electron Beam Melting. J. Manuf. Mater. Process. 2023;7:25. doi: 10.3390/jmmp7010025. DOI
Bagg S.D., Sochalski-Kolbus L.M., Bunn J.R. NASA Center for AeroSpace Information (CASI). Conference Proceeding. NASA/Langley Research Center; Hampton, VA, USA: 2016. The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Arches Made With Selective Laser Melting.
Schmidt M., Merklein M., Bourell D., Dimitrov D., Hausotte T., Wegener K., Overmeyer L., Vollertsen F., Levy G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017;66:561–583. doi: 10.1016/j.cirp.2017.05.011. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Izák J., Benč M., Kunčická L., Opěla P., Kocich R. Influence of Imposed Strain on Weldability of Dievar Alloy. Materials. 2024;17:2317. doi: 10.3390/ma17102317. PubMed DOI PMC
Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Figueiredo R.B., Kawasaki M., Langdon T.G. Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress. Prog. Mater. Sci. 2023;137:101131. doi: 10.1016/j.pmatsci.2023.101131. DOI
Yan J.-J., Li J., Yang Z.-L., Gu R.-N., Yan M., Quach W.-M. Neutron diffraction residual stress analysis and mechanical properties of additively manufactured high strength steel hollow sections. Thin-Walled Struct. 2022;179:109729. doi: 10.1016/j.tws.2022.109729. DOI
Nadammal N., Mishurova T., Fritsch T., Serrano-Munoz I., Kromm A., Haberland C., Portella P.D., Bruno G. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit. Manuf. 2021;38:101792. doi: 10.1016/j.addma.2020.101792. DOI
Hutchings M., Withers P., Holden T., Lorentzen T. Introduction to the Characterization of Residual Stress by Neutron Diffraction. CRC Press; Boca Raton, FL, USA: 2005. DOI
Withers P., Bhadeshia H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2001;17:355–365. doi: 10.1179/026708301101509980. DOI
Ramineni L., Almotari A., Ali M., Algamal A., Qattawi A. Residual Stress Mapping in Heat-Assisted Additive Manufacturing of IN 718: An X-Ray Diffraction Study. J. Mater. Eng. Perform. 2024;33:4124–4135. doi: 10.1007/s11665-024-09269-x. DOI
Marola S., Bosia S., Veltro A., Fiore G., Manfredi D., Lombardi M., Amato G., Baricco M., Battezzati L. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis. Mater. Des. 2021;202:109550. doi: 10.1016/j.matdes.2021.109550. DOI
Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2022;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI
Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC
Canelo-Yubero D., Kocich R., Šaroun J., Strunz P. Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging. Materials. 2023;16:2102. doi: 10.3390/ma16052102. PubMed DOI PMC
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Kunčická L., Kocich R. Sub-Structure and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Key Eng. Mater. 2020;865:7–12. doi: 10.4028/www.scientific.net/KEM.865.7. PubMed DOI PMC
Ishkina S., Charni D., Herrmann M., Liu Y., Epp J., Schenck C., Kuhfuss B., Zoch H.-W. Influence of process fluctuations on residual stress evolution in rotary swaging of steel tubes. Materials. 2019;16:855. doi: 10.3390/ma12060855. PubMed DOI PMC
Ortmann-Ishkina S., Charni D., Herrmann M., Liu Y., Epp J., Schenck C., Kuhfuss B. Development of residual stresses by infeed rotary swaging of steel tubes. Arch. Appl. Mech. (1991) 2021;91:3637–3647. doi: 10.1007/s00419-021-01905-5. DOI
Yuan L., Wang W., Li Y., Yang M., Zhang H., Zhang W. Effect of annealing temperature on texture and residual stress of Ti-6Al-4V alloy seamless tubing processed by cold rotary swaging. Vacuum. 2020;177:109399. doi: 10.1016/j.vacuum.2020.109399. DOI
Singh G., Kalita B., Vishnu Narayanan K.I., Arora U.K., Mahapatra M.M., Jayaganthan R. Finite element analysis and experimental evaluation of residual stress of Zr-4 alloys processed through swaging. Metals. 2020;10:1281. doi: 10.3390/met10101281. DOI
HK4—Strain Scanner. [(accessed on 17 November 2024)]. Available online: https://www.ujf.cas.cz/en/departments/department-of-neutron-and-ion-methods/instruments/lvr15/HK4.html.
Hodek J., Prantl A., Džugan J., Strunz P. Determination of directional residual stresses by the contour method. Metals. 2019;9:1104. doi: 10.3390/met9101104. DOI
Šaroun J., Rebelo-Kornmeier J., Gibmeier J., Hofmann M. Treatment of spatial resolution effects in neutron residual strain scanning. Physica. B Condens. Matter. 2018;551:468–471. doi: 10.1016/j.physb.2018.01.013. DOI
Šaroun J. STRESSFIT—Program for Fitting of Residual Stress Distributions. [(accessed on 17 November 2024)]. Available online: https://github.com/NPLtools/stressfit.
Šaroun J. SIMRES—Neutron Ray-Tracing Simulation Program. [(accessed on 17 November 2024)]. Available online: https://github.com/saroun/simres.
Martinez-Perez M., Mompean F., Ruiz-Hervias J., Borlado C., Atienza J., Garcia-Hernandez M., Elices M., Gil-Sevillano J., Peng R.L., Buslaps T. Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction. Acta Mater. 2004;52:5303–5313. doi: 10.1016/j.actamat.2004.07.036. DOI
Fernández P., Bruno G., Gonzalezdoncel G. Macro and micro-residual stress distribution in 6061 Al-15 vol.% SiCw under different heat treatment conditions. Compos. Sci. Technol. 2006;66:1738–1748. doi: 10.1016/j.compscitech.2005.11.006. DOI
Ju D.Y., Mukai R., Minakawa N., Morii Y., Moriai A. A Measurement Method of Residual Stress in Quenched Steel by Neutron Diffracation. Key Eng. Mater. 2004;270–273:139–146. doi: 10.4028/www.scientific.net/KEM.270-273.139. DOI
Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting