Residual Stress Distribution in Dievar Tool Steel Bars Produced by Conventional Additive Manufacturing and Rotary Swaging Processes

. 2024 Nov 22 ; 17 (23) : . [epub] 20241122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39685142

Grantová podpora
FSI-S-23-8231 Brno University of Technology
CZ.02.01.01/00/22_008/0004631 Ministry of Education Youth and Sports
LM2023041 Ministry of Education Youth and Sports
RVO 61389005 Czech Academy of Sciences, Nuclear Physics Institute

The impact of manufacturing strategies on the development of residual stresses in Dievar steel is presented. Two fabrication methods were investigated: conventional ingot casting and selective laser melting as an additive manufacturing process. Subsequently, plastic deformation in the form of hot rotary swaging at 900 °C was applied. Residual stresses were measured using neutron diffraction. Microstructural and phase analysis, precipitate characterization, and hardness measurement-carried out to complement the investigation-showed the microstructure improvement by rotary swaging. The study reveals that the manufacturing method has a significant effect on the distribution of residual stresses in the bars. The results showed that conventional ingot casting resulted in low levels of residual stresses (up to ±200 MPa), with an increase in hardness after rotary swaging from 172 HV1 to 613 HV1. SLM-manufactured bars developed tensile hoop and axial residual stresses in the vicinity of the surface and large compressive axial stresses (-600 MPa) in the core due to rapid cooling. The subsequent thermomechanical treatment via rotary swaging effectively reduced both the surface tensile (to approximately +200 MPa) and the core compressive residual stresses (to -300 MPa). Moreover, it resulted in a predominantly hydrostatic stress character and a reduction in von Mises stresses, offering relatively favorable residual stress characteristics and, therefore, a reduction in the risk of material failure. In addition to the significantly improved stress profile, rotary swaging contributed to a fine grain (3-5 µm instead of 10-15 µm for the conventional sample) and increased the hardness of the SLM samples from 560 HV1 to 606 HV1. These insights confirm the utility of rotary swaging as a post-processing technique that not only reduces residual stresses but also improves the microstructural and mechanical properties of additively manufactured components.

Zobrazit více v PubMed

Lu Y., Wu S., Gan Y., Huang T., Yang C., Junjie L., Lin J. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt. Laser Technol. 2015;75:197–206. doi: 10.1016/j.optlastec.2015.07.009. DOI

Valdez M., Kozuch C., Faierson E.J., Jasiuk I. Induced porosity in Super Alloy 718 through the laser additive manufacturing process: Microstructure and mechanical properties. J. Alloys Compd. 2017;725:757–764. doi: 10.1016/j.jallcom.2017.07.198. DOI

Salmi A., Atzeni E., Iuliano L., Galati M. Experimental Analysis of Residual Stresses on AlSi10Mg Parts Produced by Means of Selective Laser Melting (SLM) Procedia CIRP. 2017;62:458–463. doi: 10.1016/j.procir.2016.06.030. DOI

Hauk V., Behnken H. Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation, Application, Assessment. Elsevier; Amsterdam, The Netherlands: New York, NY, USA: 1997.

Sasaki T., Takahashi S., Kanematsu Y., Satoh Y., Iwafuchi K., Ishida M., Morii Y. Measurement of residual stresses in rails by neutron diffraction. Wear. 2008;265:1402–1407. doi: 10.1016/j.wear.2008.04.047. DOI

Harun W., Manam N., Kamariah M., Sharif S., Zulkifly A., Ahmad I., Miura H. A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 2018;331:74–97. doi: 10.1016/j.powtec.2018.03.010. DOI

Paolini A., Kollmannsberger S., Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019;30:100894. doi: 10.1016/j.addma.2019.100894. DOI

Fette M., Sander P., Wulfsberg J., Zierk H., Herrmann A., Stoess N. Optimized and Cost-efficient Compression Molds Manufactured by Selective Laser Melting for the Production of Thermoset Fiber Reinforced Plastic Aircraft Components. Procedia CIRP. 2015;35:25–30. doi: 10.1016/j.procir.2015.08.082. DOI

Buchanan C., Gardner L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng. Struct. 2019;180:332–348. doi: 10.1016/j.engstruct.2018.11.045. DOI

Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC

Vundru C., Singh R., Yan W., Karagadde S. The Effect of Martensitic Transformation on the Evolution of Residual Stresses and Identification of the Critical Linear Mass Density in Direct Laser Metal Deposition–Based Repair. J. Manuf. Sci. Eng. 2020;142:71002. doi: 10.1115/1.4046828. DOI

Parry L., Ashcroft I., Wildman R. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016;12:1–15. doi: 10.1016/j.addma.2016.05.014. DOI

Balbaa M., Mekhiel S., Elbestawi M., McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater. Des. 2020;193:108818. doi: 10.1016/j.matdes.2020.108818. DOI

Yadroitsev I., Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 2015;10:67–76. doi: 10.1080/17452759.2015.1026045. DOI

Kruth J., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004;149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051. DOI

Mukherjee T., Zhang W., DebRoy T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017;126:360–372. doi: 10.1016/j.commatsci.2016.10.003. DOI

Mishurova T., Cabeza S., Artzt K., Haubrich J., Klaus M., Genzel C., Requena G., Bruno G. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials. 2017;10:348. doi: 10.3390/ma10040348. PubMed DOI PMC

Simson T., Emmel A., Dwars A., Böhm J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017;17:183–189. doi: 10.1016/j.addma.2017.07.007. DOI

Ulbricht A., Altenburg S.J., Sprengel M., Sommer K., Mohr G., Fritsch T., Mishurova T., Serrano-Munoz I., Evans A., Hofmann M., et al. Separation of the formation mechanisms of residual stresses in lpbf 316l. Metals. 2020;10:1234. doi: 10.3390/met10091234. DOI

Liscic B., Tensi H.M., Canale L.C., Totten G.E. Quenching Theory and Technology. 2nd ed. CRC Press; Boca Raton, FL, USA: 2010.

Lozano D.E., Totten G.E., Bedolla-Gil Y., Guerrero-Mata M., Carpio M., Martinez-Cazares G.M. X-ray Determination of compressive residual stresses in spring steel generated by high-speed water quenching. Materials. 2019;12:1154. doi: 10.3390/ma12071154. PubMed DOI PMC

Zhao X., Munroe P., Habibi D., Xie Z. Roles of compressive residual stress in enhancing the corrosion resistance of nano nitride composite coatings on steel. J. Asian Ceram. Soc. 2013;1:86–94. doi: 10.1016/j.jascer.2013.03.002. DOI

Dunbar A., Denlinger E., Heigel J., Michaleris P., Guerrier P., Martukanitz R., Simpson T. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process. Addit. Manuf. 2016;12:25–30. doi: 10.1016/j.addma.2016.04.007. DOI

Craeghs T., Clijsters S., Kruth J.-P., Bechmann F., Ebert M.-C. Detection of Process Failures in Layerwise Laser Melting with Optical Process Monitoring. Phys. Procedia. 2012;39:753–759. doi: 10.1016/j.phpro.2012.10.097. DOI

Clijsters S., Craeghs T., Buls S., Kempen K., Kruth J.-P. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int. J. Adv. Manuf. Technol. 2014;75:1089–1101. doi: 10.1007/s00170-014-6214-8. DOI

Santhoshsarang D.M., Divya K., Telasang G., Soundarapandian S., Bathe R., Padmanabham G. Additively Manufactured High-Performance Conformally Cooled H13 Tool Steel Die Insert for Pressure Die Casting. Trans. Indian Natl. Acad. Eng. (Online) 2021;6:1037–1048. doi: 10.1007/s41403-021-00233-y. DOI

Sjöström J., Bergström J. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. J. Mater. Process. Technol. 2004;153–154:1089–1096. doi: 10.1016/j.jmatprotec.2004.04.158. DOI

Xiang S., Wu R., Li W., Hu T., Huang S. Improved Red Hardness and Toughness of Hot Work Die Steel through Tungsten Alloying. J. Mater. Eng. Perform. 2021;30:6146–6159. doi: 10.1007/s11665-021-05793-2. DOI

Samuel A., Prabhu K.N. Residual Stress and Distortion during Quench Hardening of Steels: A Review. J. Mater. Eng. Perform. 2022;31:5161–5188. doi: 10.1007/s11665-022-06667-x. DOI

Macherauch E., Vöhringer O. Theory and Technology of Quenching. Springer; Berlin/Heidelberg, Germany: 1992. Residual Stresses After Quenching; pp. 117–181. DOI

Furrer D.U., Semiatin S.L. ASM Handbook, Volume 22B—Metals Process Simulation. ASM International; Detroit, MI, USA: 2010. Modeling of Quenching, Residual-Stress Formation, and Quench Cracking; pp. 547–599.

Macchi J., Gaudez S., Geandier G., Teixeira J., Denis S., Bonnet F., Allain S.Y. Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy X-Ray diffraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;800:140249. doi: 10.1016/j.msea.2020.140249. DOI

Ding W., Liu Y., Xie J., Sun L., Liu T., Yuan F., Pan J. Effect of carbide precipitation on the evolution of residual stress during tempering. Metals. 2019;9:709. doi: 10.3390/met9060709. DOI

Chen Y., Ding W., Liang L., Liu X., Wang H., Xiao S., Chen Q., Yang Y., Yang W. Intervention mechanism of carbide precipitation during tempering and its impact on residual stress and mechanical properties of wear-resistant steels. Ironmak. Steelmak. 2024;51:502–512. doi: 10.1177/03019233241250136. DOI

Kantaros A., Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater. Des. 2013;50:44–50. doi: 10.1016/j.matdes.2013.02.067. DOI

Kantaros A., Karalekas D. Conference Proceedings of the Society for Experimental Mechanics Series. Volume 8. Springer International Publishing; Cham, Switzerland: 2014. FBG Based in Situ Characterization of Residual Strains in FDM Process; pp. 333–337. DOI

Khorasani M., Ghasemi A., Rolfe B., Gibson I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022;28:87–100. doi: 10.1108/RPJ-01-2021-0009. DOI

Masaylo D., Igoshin S., Popovich A., Orlov A., Kim A., Popovich V. Microstructural and Hardness Behavior of H13 Tool Steel Manufactured by Ultrasound-Assisted Laser-Directed Energy Deposition. Metals. 2022;12:450. doi: 10.3390/met12030450. DOI

Yuan M., Cao Y., Karamchedu S., Hosseini S., Yao Y., Berglund J., Liu L., Nyborg L. Characteristics of a modified H13 hot-work tool steel fabricated by means of laser beam powder bed fusion. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022;831:142322. doi: 10.1016/j.msea.2021.142322. DOI

Zhu Y., Chen J., Li X. Numerical Simulation of Thermal Field and Performance Study on H13 Die Steel-Based Wire Arc Additive Manufacturing. Metals. 2023;13:1484. doi: 10.3390/met13081484. DOI

Yan J.J., Zheng D.L., Li H.X., Jia X., Sun J.F., Li Y.L., Qian M., Yan M. Selective laser melting of H13: Microstructure and residual stress. J. Mater. Sci. 2017;52:12476–12485. doi: 10.1007/s10853-017-1380-3. DOI

Sander J., Hufenbach J., Giebeler L., Wendrock H., Kühn U., Eckert J. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater. Des. 2016;89:335–341. doi: 10.1016/j.matdes.2015.09.148. DOI

Gallmeyer T.G., Moorthy S., Kappes B.B., Mills M.J., Amin-Ahmadi B., Stebner A.P. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Addit. Manuf. 2020;31:100977. doi: 10.1016/j.addma.2019.100977. DOI

Voisin T., Forien J.-B., Perron A., Aubry S., Bertin N., Samanta A., Baker A., Wang Y.M. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater. 2021;203:116476. doi: 10.1016/j.actamat.2020.11.018. DOI

Pröbstle M., Neumeier S., Hopfenmüller J., Freund L., Niendorf T., Schwarze D., Göken M. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2016;674:299–307. doi: 10.1016/j.msea.2016.07.061. DOI

Vrancken B., Thijs L., Kruth J.-P., Van Humbeeck J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022. DOI

Charmi A., Falkenberg R., Ávila L., Mohr G., Sommer K., Ulbricht A., Sprengel M., Neumann R.S., Skrotzki B., Evans A. Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;799:140154. doi: 10.1016/j.msea.2020.140154. DOI

Zhou Y.H., Li W.P., Wang D.W., Zhang L., Ohara K., Shen J., Ebel T., Yan M. Selective Laser Melting Enabled Additive Manufacturing of Ti-22Al-25Nb Intermetallic: Excellent Combination of Strength and Ductility, and Unique Microstructural Features Associated. Acta Mater. 2019;173:117–129. doi: 10.1016/j.actamat.2019.05.008. DOI

Seede R., Shoukr D., Zhang B., Whitt A., Gibbons S., Flater P., Elwany A., Arroyave R., Karaman I. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Mater. 2020;186:199–214. doi: 10.1016/j.actamat.2019.12.037. DOI

Boes J., Röttger A., Theisen W., Cui C., Uhlenwinkel V., Schulz A., Zoch H.-W., Stern F., Tenkamp J., Walther F. Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel. Addit. Manuf. 2020;34:101379. doi: 10.1016/j.addma.2020.101379. DOI

Saeidi K., Zapata D.L., Lofaj F., Kvetkova L., Olsen J., Shen Z., Akhtar F. Ultra-high strength martensitic 420 stainless steel with high ductility. Addit. Manuf. 2019;29:100803. doi: 10.1016/j.addma.2019.100803. DOI

Bartlett J.L., Li X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019;27:131–149. doi: 10.1016/j.addma.2019.02.020. DOI

Chao Q., Thomas S., Birbilis N., Cizek P., Hodgson P.D., Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;821:141611. doi: 10.1016/j.msea.2021.141611. DOI

Jaber H., Kónya J., Kulcsár K., Kovács T. Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting. Materials. 2022;15:1978. doi: 10.3390/ma15051978. PubMed DOI PMC

Mercelis P., Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI

Levkulich N., Semiatin S., Gockel J., Middendorf J., DeWald A., Klingbeil N. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 2019;28:475–484. doi: 10.1016/j.addma.2019.05.015. DOI

Serrano-Munoz I., Fritsch T., Mishurova T., Trofimov A., Apel D., Ulbricht A., Kromm A., Hesse R., Evans A., Bruno G. On the interplay of microstructure and residual stress in LPBF IN718. J. Mater. Sci. 2021;56:5845–5867. doi: 10.1007/s10853-020-05553-y. DOI

Pertuz-Comas A.D., González-Estrada O.A., Martínez-Díaz E., Villegas-Bermúdez D.F., Díaz-Rodríguez J.G. Strain-Based Fatigue Experimental Study on Ti–6Al–4V Alloy Manufactured by Electron Beam Melting. J. Manuf. Mater. Process. 2023;7:25. doi: 10.3390/jmmp7010025. DOI

Bagg S.D., Sochalski-Kolbus L.M., Bunn J.R. NASA Center for AeroSpace Information (CASI). Conference Proceeding. NASA/Langley Research Center; Hampton, VA, USA: 2016. The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Arches Made With Selective Laser Melting.

Schmidt M., Merklein M., Bourell D., Dimitrov D., Hausotte T., Wegener K., Overmeyer L., Vollertsen F., Levy G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017;66:561–583. doi: 10.1016/j.cirp.2017.05.011. DOI

Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI

Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI

Izák J., Benč M., Kunčická L., Opěla P., Kocich R. Influence of Imposed Strain on Weldability of Dievar Alloy. Materials. 2024;17:2317. doi: 10.3390/ma17102317. PubMed DOI PMC

Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI

Figueiredo R.B., Kawasaki M., Langdon T.G. Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress. Prog. Mater. Sci. 2023;137:101131. doi: 10.1016/j.pmatsci.2023.101131. DOI

Yan J.-J., Li J., Yang Z.-L., Gu R.-N., Yan M., Quach W.-M. Neutron diffraction residual stress analysis and mechanical properties of additively manufactured high strength steel hollow sections. Thin-Walled Struct. 2022;179:109729. doi: 10.1016/j.tws.2022.109729. DOI

Nadammal N., Mishurova T., Fritsch T., Serrano-Munoz I., Kromm A., Haberland C., Portella P.D., Bruno G. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit. Manuf. 2021;38:101792. doi: 10.1016/j.addma.2020.101792. DOI

Hutchings M., Withers P., Holden T., Lorentzen T. Introduction to the Characterization of Residual Stress by Neutron Diffraction. CRC Press; Boca Raton, FL, USA: 2005. DOI

Withers P., Bhadeshia H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2001;17:355–365. doi: 10.1179/026708301101509980. DOI

Ramineni L., Almotari A., Ali M., Algamal A., Qattawi A. Residual Stress Mapping in Heat-Assisted Additive Manufacturing of IN 718: An X-Ray Diffraction Study. J. Mater. Eng. Perform. 2024;33:4124–4135. doi: 10.1007/s11665-024-09269-x. DOI

Marola S., Bosia S., Veltro A., Fiore G., Manfredi D., Lombardi M., Amato G., Baricco M., Battezzati L. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis. Mater. Des. 2021;202:109550. doi: 10.1016/j.matdes.2021.109550. DOI

Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2022;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI

Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC

Canelo-Yubero D., Kocich R., Šaroun J., Strunz P. Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging. Materials. 2023;16:2102. doi: 10.3390/ma16052102. PubMed DOI PMC

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Kunčická L., Kocich R. Sub-Structure and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Key Eng. Mater. 2020;865:7–12. doi: 10.4028/www.scientific.net/KEM.865.7. PubMed DOI PMC

Ishkina S., Charni D., Herrmann M., Liu Y., Epp J., Schenck C., Kuhfuss B., Zoch H.-W. Influence of process fluctuations on residual stress evolution in rotary swaging of steel tubes. Materials. 2019;16:855. doi: 10.3390/ma12060855. PubMed DOI PMC

Ortmann-Ishkina S., Charni D., Herrmann M., Liu Y., Epp J., Schenck C., Kuhfuss B. Development of residual stresses by infeed rotary swaging of steel tubes. Arch. Appl. Mech. (1991) 2021;91:3637–3647. doi: 10.1007/s00419-021-01905-5. DOI

Yuan L., Wang W., Li Y., Yang M., Zhang H., Zhang W. Effect of annealing temperature on texture and residual stress of Ti-6Al-4V alloy seamless tubing processed by cold rotary swaging. Vacuum. 2020;177:109399. doi: 10.1016/j.vacuum.2020.109399. DOI

Singh G., Kalita B., Vishnu Narayanan K.I., Arora U.K., Mahapatra M.M., Jayaganthan R. Finite element analysis and experimental evaluation of residual stress of Zr-4 alloys processed through swaging. Metals. 2020;10:1281. doi: 10.3390/met10101281. DOI

HK4—Strain Scanner. [(accessed on 17 November 2024)]. Available online: https://www.ujf.cas.cz/en/departments/department-of-neutron-and-ion-methods/instruments/lvr15/HK4.html.

Hodek J., Prantl A., Džugan J., Strunz P. Determination of directional residual stresses by the contour method. Metals. 2019;9:1104. doi: 10.3390/met9101104. DOI

Šaroun J., Rebelo-Kornmeier J., Gibmeier J., Hofmann M. Treatment of spatial resolution effects in neutron residual strain scanning. Physica. B Condens. Matter. 2018;551:468–471. doi: 10.1016/j.physb.2018.01.013. DOI

Šaroun J. STRESSFIT—Program for Fitting of Residual Stress Distributions. [(accessed on 17 November 2024)]. Available online: https://github.com/NPLtools/stressfit.

Šaroun J. SIMRES—Neutron Ray-Tracing Simulation Program. [(accessed on 17 November 2024)]. Available online: https://github.com/saroun/simres.

Martinez-Perez M., Mompean F., Ruiz-Hervias J., Borlado C., Atienza J., Garcia-Hernandez M., Elices M., Gil-Sevillano J., Peng R.L., Buslaps T. Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction. Acta Mater. 2004;52:5303–5313. doi: 10.1016/j.actamat.2004.07.036. DOI

Fernández P., Bruno G., Gonzalezdoncel G. Macro and micro-residual stress distribution in 6061 Al-15 vol.% SiCw under different heat treatment conditions. Compos. Sci. Technol. 2006;66:1738–1748. doi: 10.1016/j.compscitech.2005.11.006. DOI

Ju D.Y., Mukai R., Minakawa N., Morii Y., Moriai A. A Measurement Method of Residual Stress in Quenched Steel by Neutron Diffracation. Key Eng. Mater. 2004;270–273:139–146. doi: 10.4028/www.scientific.net/KEM.270-273.139. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting

. 2025 Mar 13 ; 30 (6) : . [epub] 20250313

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...