Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-15479S
Czech Science Foundation
LM2018111
Czech Ministry of Education, Youth and Sports
LM2018120
Czech Ministry of Education, Youth and Sports
PubMed
36903219
PubMed Central
PMC10004458
DOI
10.3390/ma16052102
PII: ma16052102
Knihovny.cz E-resources
- Keywords
- aluminum, composite, copper, finite element simulation, neutron diffraction, residual stress, rotary swaging, severe plastic deformation, von Mises,
- Publication type
- Journal Article MeSH
Rotary swaging is a promising technique for the fabrication of clad Cu/Al composites. Residual stresses appearing during the processing of a special arrangement of Al filaments within the Cu matrix and the influence of the bar reversal between the passes were studied by (i) neutron diffraction using a novel evaluation procedure for pseudo-strain correction and (ii) a finite element method simulation. The initial study of the stress differences in the Cu phase allowed us to infer that the stresses around the central Al filament are hydrostatic when the sample is reversed during the passes. This fact enabled the calculation of the stress-free reference and, consequently, the analysis of the hydrostatic and deviatoric components. Finally, the stresses with the von Mises relation were calculated. Hydrostatic stresses (far from the filaments) and axial deviatoric stresses are zero or compressive for both reversed and non-reversed samples. The reversal of the bar direction slightly changes the overall state within the region of high density of Al filaments, where hydrostatic stresses tend to be tensile, but it seems to be advantageous for avoiding plastification in the regions without Al wires. The finite element analysis revealed the presence of shear stresses; nevertheless, stresses calculated with the von Mises relation show similar trends in the simulation and in the neutron measurements. Microstresses are suggested as a possible reason for the large width of the neutron diffraction peak in the measurement of the radial direction.
Institute of Materials Physics Helmholtz Zentrum Hereon Max Planck Straße 1 21502 Geesthacht Germany
Neutron Physics Department Nuclear Physics Institute of the CAS 25068 Řež Czech Republic
See more in PubMed
Bae J., Rao A.P., Kim K., Kim N.J. Cladding of Mg alloy with Al by twin-roll casting. Scr. Mater. 2011;64:836–839. doi: 10.1016/j.scriptamat.2011.01.013. DOI
Uscinowicz R. Impact of temperature on shear strength of single lap Al–Cu bimetallic joint. Compos. Part B Eng. 2013;44:344–356. doi: 10.1016/j.compositesb.2012.04.073. DOI
Kappel E. Distortions of composite aerospace frames due to processing, thermal loads and trimming operations and an as-sessment from an assembly perspective. Compos. Struct. 2019;220:338–346. doi: 10.1016/j.compstruct.2019.03.099. DOI
Elanchezhian C., Ramnath B.V., Ramakrishnan G., Raghavendra K.S., Muralidharan M., Kishore V. Review on metal matrix composites for marine applications. Mater. Today Proc. 2018;5:1211–1218. doi: 10.1016/j.matpr.2017.11.203. DOI
Tabin J., Skoczeń B., Bielski J. Discontinuous plastic flow in superconducting multifilament composites. Int. J. Solids Struct. 2020;202:12–27. doi: 10.1016/j.ijsolstr.2020.05.033. DOI
Ambli K.G., Dodamani B.M., Jagadeesh A., Vanarotti M.B. Heterogeneous composites for low and medium temperature thermal insulation: A review. Energy Build. 2019;199:455–460. doi: 10.1016/j.enbuild.2019.07.024. DOI
Kunčická L., Kocich R., Lowe T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI
Gibson A. The economics of copper clad aluminum bimetallic cables. Wire Cable Technol. Int. 2005;33:82–83.
Chu D., Zhang J.Y., Yao J.J., Han Y.Q., Wu C.J. Cu–Al interfacial compounds and formation mechanism of copper cladding aluminum composites. Trans. Nonferrous Met. Soc. China. 2017;27:2521–2528. doi: 10.1016/S1003-6326(17)60279-6. DOI
Kunčická L., Macháčková A., Krátká L., Kocich R. Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Materials. 2019;12:3462. doi: 10.3390/ma12213462. PubMed DOI PMC
Kim W.N., Hong S.I. Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite. Mater. Sci. Eng. A. 2016;651:976–986. doi: 10.1016/j.msea.2015.11.062. DOI
Jin K., Yuan Q., Tao J., Domblesky J., Guo X. Analysis of the forming characteristics for Cu/Al bimetal tubes produced by the spinning process. Int. J. Adv. Manuf. Technol. 2018;101:147–155. doi: 10.1007/s00170-018-2836-6. DOI
Lesuer D.R., Syn C.K., Sherby O.D., Wadsworth J., Lewandowski J.J., Hunt W.H. Mechanical behaviour of laminated metal composites. Int. Mater. Rev. 1996;41:169–197. doi: 10.1179/imr.1996.41.5.169. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation be-haviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Atrian A., Fereshteh-Saniee F. Deep drawing process of steel/brass laminated sheets. Compos. Part B Eng. 2013;47:75–81. doi: 10.1016/j.compositesb.2012.10.023. DOI
Lee J., Son H., Oh I., Kang C., Yun C., Lim S., Kwon H. Fabrication and characterization of Ti–Cu clad materials by indirect extrusion. J. Mater. Process. Technol. 2007;187–188:653–656. doi: 10.1016/j.jmatprotec.2006.11.144. DOI
Movahedi M., Kokabi A.H., Seyed Reihani S.M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Des. 2011;32:3143–3149. doi: 10.1016/j.matdes.2011.02.057. DOI
Masahashi N., Komatsu K., Watanabe S., Hanada S. Microstructure and properties of iron aluminum alloy/CrMo steel composite prepared by clad rolling. J. Alloy. Compd. 2004;379:272–279. doi: 10.1016/j.jallcom.2004.02.043. DOI
Hosseini M., Manesh H.D. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–132. doi: 10.1016/j.matdes.2015.05.010. DOI
Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI
Kim I.-K., Hong S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013;47:590–598. doi: 10.1016/j.matdes.2012.12.070. DOI
Ha J.S., Hong S.I. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Mater. Sci. Eng. A. 2016;651:805–809. doi: 10.1016/j.msea.2015.11.041. DOI
Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2021;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI
Hutchings M., Withers P.J., Holden T., Lorentzen T. Introduction to the Characterization of Residual Stress by Neutron Diffraction. Informa UK Limited; Colchester, UK: 2005.
Šaroun J., Rebelo-Kornmeier J., Gibmeier J., Hofmann M. Treatment of spatial resolution effects in neutron residual strain scanning. Phys. B Condens. Matter. 2018;551:468–471. doi: 10.1016/j.physb.2018.01.013. DOI
Withers P.J., Bhadeshia H.K.D.H. Residual stress, Part 1—Measurement techniques. Mater. Sci. Technol. 2001;17:355–365. doi: 10.1179/026708301101509980. DOI
HK4—Strain Scanner. [(accessed on 22 February 2023)]. Available online: http://www.ujf.cas.cz/en/departments/department-of-neutron-physics/instruments/lvr15/HK4.html.
Hodek J., Prantl A., Džugan J., Strunz P. Determination of Directional Residual Stresses by the Contour Method. Metals. 2019;9:1104. doi: 10.3390/met9101104. DOI
Lodini A. Calculation of residual stress from measured strain. In: Fitzpatrick M.E., Lodini A., editors. Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. Taylor & Francis; London, UK: 2003. pp. 47–59.
Kröner E. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Für Phys. 1958;151:504–518. doi: 10.1007/BF01337948. DOI
Saroun J. SIMRES—Neutron Ray-Tracing Simulation Program. [(accessed on 31 December 2022)]. Available online: https://github.com/saroun/simres.
Saroun J. STRESSFIT—Program for Fitting of Residual Stress Distributions. [(accessed on 31 December 2022)]. Available online: https://github.com/NPLtools/stressfit.
Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC
Fernández P., Bruno G., González-Doncel G. Macro and micro-residual stress distribution in 6061 Al-15 vol.% SiCw under different heat treatment conditions. Compos. Sci. Technol. 2006;66:1738–1748. doi: 10.1016/j.compscitech.2005.11.006. DOI
Martinez-Perez M., Mompean F., Ruiz-Hervias J., Borlado C., Atienza J., Garcia-Hernandez M., Elices M., Gil-Sevillano J., Peng R.L., Buslaps T. Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction. Acta Mater. 2004;52:5303–5313. doi: 10.1016/j.actamat.2004.07.036. DOI
Pintschovius L., Jung V., Macherauch E., Vöhringer O. Residual stress measurements by means of neutron diffraction. Mater. Sci. Eng. 1983;61:43–50. doi: 10.1016/0025-5416(83)90124-6. DOI
Salvati E., Korsunsky A. An analysis of macro- and micro-scale residual stresses of Type I, II and III using FIB-DIC mi-cro-ring-core milling and crystal plasticity FE modelling. Int. J. Plast. 2017;98:123–138. doi: 10.1016/j.ijplas.2017.07.004. DOI
Everaerts J., Salvati E., Uzun F., Brandt L.R., Zhang H., Korsunsky A.M. Separating macro- (Type I) and micro- (Type II+III) residual stresses by ring-core FIB-DIC milling and eigenstrain modelling of a plastically bent titanium alloy bar. Acta Mater. 2018;156:43–51. doi: 10.1016/j.actamat.2018.06.035. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire con-ductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating Microstrain and Activated Slip Systems with Me-chanical Properties within Rotary Swaged WNiCo Pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC
Kocich R., Kuncická L., Dvorák K., Machácková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750.
Technological Alloying Impact on Formation of Phase Composition of Al-Fe-Si-X Alloys
Structural Phenomena Introduced by Rotary Swaging: A Review