Technological Alloying Impact on Formation of Phase Composition of Al-Fe-Si-X Alloys
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
AP19675471
Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan
PubMed
40363599
PubMed Central
PMC12072288
DOI
10.3390/ma18092096
PII: ma18092096
Knihovny.cz E-resources
- Keywords
- AlFeSi, diagrams phase transformation, intermetallic phases, microstructure, simulation and modeling,
- Publication type
- Journal Article MeSH
Given by their low weight and favorable combination of properties, Al-Fe-Si-based intermetallic and duplex alloys are widely used in mechanical engineering. The use of aluminum scrap for their production imparts the necessity for a thorough study of the impacts of presence of impurity/alloying elements on the phase composition. By this reason, individual impacts of the impurity/alloying elements present in the majority of commercial alloys on phase compositions of the alloys were studied herein. Particular emphasis was on the formation of the α phase and features of the α↔β transformation, as well as on their effects on the solidus, liquidus, and phase transformation temperatures. Modeling was used to study the synergistic effect of the simultaneous introduction of 12 elements into aluminum. According to the results, magnesium, copper, and nickel have a tendency to form combined intermetallic phases, and beryllium, as a structurally free element, forms precipitates even at minimum concentrations. Verification of the modelled results was performed using a real alloy prepared experimentally from commercially available raw materials. The comparison of the results provided by computer modeling and the actual phase composition showed sufficient agreement. The herein acquired results contribute to a deeper understanding of the features of phase transitions occurring during alloying of aluminum alloys and will also be useful for predicting microstructures and phase compositions of intermetallic alloys. This research has potential to inspire further development in materials science and engineering.
See more in PubMed
Padalko A.G., Pyrov M.S., Karelin R.D., Yusupov V.S., Talanova G.V. Barothermal Treatment, Cold Plastic Deformation, Microstructure and Properties of Binary Silumin Al–8 at % Si. Russ. Metall. 2021;2021:1155–1164. doi: 10.1134/S0036029521090123. DOI
Zaguliaev D., Ivanov Y., Konovalov S., Abaturova A., Gromov V., Rubannikova Y., Semin A. Effect of Electron-Plasma Treatment on the Microstructure of Al-11wt%Si Alloy. Mater. Res. 2020;23:20200057. doi: 10.1590/1980-5373-mr-2020-0057. DOI
Zaguliaev D., Ivanov Y., Gudala S., Tolkachev O., Aksenova K., Konovalov S., Shlyarov V. Effect of Thickness of Ti Coating Deposited by Vacuum Arc Melting on Fatigue Behavior of Aluminum Alloy Al–5%Si. Coatings. 2023;13:1764. doi: 10.3390/coatings13101764. DOI
Sersour Z., Amirouche L. Effect of Alloying Additions and High Temperature T5-Treatment on the Microstructural Behavior of Al–Si-Based Eutectic and Hypo-Eutectic Alloys. Int. J. Met. 2022;16:1276–1291. doi: 10.1007/s40962-021-00676-7. DOI
Sjölander E., Seifeddine S. The Heat Treatment of Al–Si–Cu–Mg Casting Alloys. J. Mater. Process. Technol. 2010;210:1249–1259. doi: 10.1016/j.jmatprotec.2010.03.020. DOI
Mirzaev I., Sagdiev K., Yuvmitov A., Turdiev M., Egamberdiev B. Experimental Determination of Dynamic Coefficient of Amonton-Coulomb Dry Friction. Facta Univ. Ser. Mech. Eng. 2024;22:503. doi: 10.22190/FUME231225016M. DOI
Nikolaevich Grigoriev S., Vasilievna Tarasova T., Olegovna Gvozdeva G., Nowotny S. Structure Formation of Hypereutectic Al-Si-Alloys Produced by Laser Surface Treatment. Strojniški Vestn. J. Mech. Eng. 2014;60:389–394. doi: 10.5545/sv-jme.2013.1211. DOI
Li W., Li S., Liu J., Zhang A., Zhou Y., Wei Q., Yan C., Shi Y. Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism. Mater. Sci. Eng. A. 2016;663:116–125. doi: 10.1016/j.msea.2016.03.088. DOI
Wu J., Wang X.Q., Wang W., Attallah M.M., Loretto M.H. Microstructure and Strength of Selectively Laser Melted AlSi10Mg. Acta Mater. 2016;117:311–320. doi: 10.1016/j.actamat.2016.07.012. DOI
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Hemachandra M., Mamedipaka R., Kumar A., Thapliyal S. Investigating the Microstructure and Mechanical Behavior of Optimized Eutectic Al Si Alloy Developed by Direct Energy Deposition. J. Manuf. Process. 2024;110:398–411. doi: 10.1016/j.jmapro.2024.01.002. DOI
Fang X., Li K., Ma M., Shang J., Feng X., Hou Y., Zhu Y., Huang K. Microstructure and Properties of a Novel High-Performance Al-Si-Mg Alloy Fabricated by Wire-Arc Directed Energy Deposition. Mater. Lett. 2024;360:136010. doi: 10.1016/j.matlet.2024.136010. DOI
Wang C., Yu F., Zhao D., Zhao X., Zuo L. Microstructure Evolution of Al-15% Si Alloy during Hot Rolling. Philos. Mag. Lett. 2018;98:456–463. doi: 10.1080/09500839.2019.1573332. DOI
Cheng W., Liu C.Y., Ge Z.J. Optimizing the Mechanical Properties of Al–Si Alloys through Friction Stir Processing and Rolling. Mater. Sci. Eng. A. 2021;804:140786. doi: 10.1016/j.msea.2021.140786. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI
Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC
Canelo-Yubero D., Kocich R., Šaroun J., Strunz P. Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging. Materials. 2023;16:2102. doi: 10.3390/ma16052102. PubMed DOI PMC
Alemdag Y., Karabiyik S., Mikhaylovskaya A.V., Kishchik M.S., Purcek G. Effect of Multi-Directional Hot Forging Process on the Microstructure and Mechanical Properties of Al–Si Based Alloy Containing High Amount of Zn and Cu. Mater. Sci. Eng. A. 2021;803:140709. doi: 10.1016/j.msea.2020.140709. DOI
Xia X., Chen M., Lu Y.-J., Fan F., Zhu C., Huang J., Deng T., Zhu S. Microstructure and Mechanical Properties of Isothermal Multi-Axial Forging Formed AZ61 Mg Alloy. Trans. Nonferrous Met. Soc. China. 2013;23:3186–3192. doi: 10.1016/S1003-6326(13)62851-4. DOI
Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist Channel Angular Pressing (TCAP) as a Method for Increasing the Efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI
Kocich R. Effects of Twist Channel Angular Pressing on Structure and Properties of Bimetallic Al/Cu Clad Composites. Mater. Des. 2020;196:109255. doi: 10.1016/j.matdes.2020.109255. DOI
Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP. Kov. Mater. Mater. 2007;45:115–120.
Kocich R., Greger M., Macháčková A. Finite Element Investigation of Influence of Selected Factors on ECAP Process; Proceedings of the METAL 2010: 19th International Metallurgical and Materials Conference; Roznov pod Radhostem, Czech Republic. 18–20 May 2010; Greensboro, NC, USA: Tanger Ltd.; 2010. pp. 166–171.
Andreyachshenko V.A. Evolution of the AA2030 Alloy Microstructure in the ECAP Process. Kov. Mater. Mater. 2022;60:79–87. doi: 10.31577/km.2022.2.79. DOI
Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of Deformation Behavior, Structure and Mechanical Properties of the AlSiMnFe Alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI
Kocich R., Macháčková A., Andreyachshenko V.A. A Study of Plastic Deformation Behaviour of Ti Alloy during Equal Channel Angular Pressing with Partial Back Pressure. Comput. Mater. Sci. 2015;101:233–241. doi: 10.1016/j.commatsci.2015.02.003. DOI
Zhilyaev A.P., García-Infanta J.M., Carreño F., Langdon T.G., Ruano O.A. Particle and Grain Growth in an Al–Si Alloy during High-Pressure Torsion. Scr. Mater. 2007;57:763–765. doi: 10.1016/j.scriptamat.2007.06.029. DOI
Cepeda-Jiménez C.M., Orozco-Caballero A., García-Infanta J.M., Zhilyaev A.P., Ruano O.A., Carreño F. Assessment of Homogeneity of the Shear-Strain Pattern in Al–7wt%Si Casting Alloy Processed by High-Pressure Torsion. Mater. Sci. Eng. A. 2014;597:102–110. doi: 10.1016/j.msea.2013.12.072. DOI
Cepeda-Jiménez C.M., García-Infanta J.M., Zhilyaev A.P., Ruano O.A., Carreño F. Influence of the Supersaturated Silicon Solid Solution Concentration on the Effectiveness of Severe Plastic Deformation Processing in Al–7wt.% Si Casting Alloy. Mater. Sci. Eng. A. 2011;528:7938–7947. doi: 10.1016/j.msea.2011.07.016. DOI
Mikolajczak P. Distribution and Morphology of α-Al, Si and Fe-Rich Phases in Al–Si–Fe Alloys under an Electromagnetic Field. Materials. 2023;16:3304. doi: 10.3390/ma16093304. PubMed DOI PMC
Andreyachshenko V. Evolution of Al-Si-Mn-Fe Aluminum Alloy Microstructure in the Equal-Channel Angular Pressing with Back Pressure. Mater. Lett. 2019;254:433–435. doi: 10.1016/j.matlet.2019.07.127. DOI
Asadikiya M., Yang S., Zhang Y., Lemay C., Apelian D., Zhong Y. A Review of the Design of High-Entropy Aluminum Alloys: A Pathway for Novel Al Alloys. J. Mater. Sci. 2021;56:12093–12110. doi: 10.1007/s10853-021-06042-6. DOI
Canté M.V., Lima T.S., Brito C., Garcia A., Cheung N., Spinelli J.E. An Alternative to the Recycling of Fe-Contaminated Al. J. Sustain. Metall. 2018;4:412–426. doi: 10.1007/s40831-018-0188-y. DOI
Lan X., Li K., Wang J., Yang M., Lu Q., Du Y. Developing Al–Fe–Si Alloys with High Thermal Stability through Tuning Fe, Si Contents and Cooling Rates. Intermetallics. 2022;144:107505. doi: 10.1016/j.intermet.2022.107505. DOI
Andreyachshenko V., Naizabekov A. The Technology of Equal Channel Angle Backpressure Extrusion for Deformation Iron and Aluminium Alloys; Proceedings of the NANOCON 2011; Brno, Czech Republic. 21–23 September 2011; Brno, Czech Republic: Tanger Ltd.; 2011. pp. 246–252.
Naizabekov A.B., Andreyashchenko V.A. Evaluation of Possible Mechanical Property Improvement for Alloy of the Al–Fe–Si–Mn System by Equal-Channel Angular Pressing. Metallurgist. 2013;57:159–163. doi: 10.1007/s11015-013-9706-0. DOI
Naizabekov A.B., Andreyachshenko V., Kliber J. Forming of Microstructure of the Al-Si-Fe-Mn System Alloy by Equal Channel Angular Pressing with Backpressure; Proceedings of the 21st International Conference on Metallurgy and Materials (METAL 2012); Brno, Czech Republic. 23–25 May 2012; Brno, Czech Republic: Tanger Ltd.; 2012. pp. 391–395.
Du Y., Chang Y.A., Liu S., Huang B., Xie F.-Y., Yang Y., Chen S.-L. Thermodynamic Description of the Al–Fe–Mg–Mn–Si System and Investigation of Microstructure and Microsegregation during Directional Solidification of an Al–Fe–Mg–Mn–Si Alloy. Z. Für Met. 2005;96:1351–1362. doi: 10.3139/146.101185. DOI
Ren J., Fang X., Chen D., Cao C., He Y., Liu J. The Effect of Heat Treatments on the Microstructural Evolution of Twin-Roll-Cast Al-Fe-Si Alloys. J. Mater. Eng. Perform. 2021;30:4401–4410. doi: 10.1007/s11665-021-05732-1. DOI
Luo L., Tang Y., Liang X., Su Y., Zhang Y., Xie H. Optimizing the Morphology and Solidification Behavior of Fe-Rich Phases in Eutectic Al-Si-Based Alloys with Different Fe Contents by Adding Mn Elements. Materials. 2024;17:4104. doi: 10.3390/ma17164104. PubMed DOI PMC
Timpel M., Wanderka N., Grothausmann R., Banhart J. Distribution of Fe-Rich Phases in Eutectic Grains of Sr-Modified Al–10wt.% Si–0.1wt.% Fe Casting Alloy. J. Alloys Compd. 2013;558:18–25. doi: 10.1016/j.jallcom.2012.12.009. DOI
Gan Z., Hu Z., Su Y., Liu Y., Ni Q., Li Y., Wu C., Liu J. Influence of Super-Gravity Coefficient on Spatial Distribution of Solidification Structure in Al-14.5Si Alloys. J. Mater. Res. Technol. 2021;15:4955–4969. doi: 10.1016/j.jmrt.2021.10.106. DOI
Lan X., Xiao Y., Hu B., Yang M., Wang Q., Lu Q., Yang T., Li K., Wang J., Wang Z., et al. Systematic Study of Growth Behavior of β-Al9Fe2Si2 in Al Alloys with High Iron and Silicon Contents. J. Mater. Res. Technol. 2023;26:260–266. doi: 10.1016/j.jmrt.2023.07.212. DOI
Wang M., Guo Y., Wang H., Zhao S. Characterization of Refining the Morphology of Al–Fe–Si in A380 Aluminum Alloy Due to Ca Addition. Processes. 2022;10:672. doi: 10.3390/pr10040672. DOI
Aranda V.A., Figueroa I.A., González G., García-Hinojosa J.A., Alfonso I. Study of the Microstructure and Mechanical Properties of Al-Si-Fe with Additions of Chromium by Suction Casting. J. Alloys Compd. 2021;853:157155. doi: 10.1016/j.jallcom.2020.157155. DOI
Andreyachshenko V., Isheva Y., Mazhit A., Imangazinova D. ECAP-Treated Aluminium Alloy AA2030: Microstructure and Mechanical Properties. Mater. Tehnol. 2019;53:805–810. doi: 10.17222/mit.2018.250. DOI
Pang N., Shi Z., Wang C., Li N., Lin Y. Influence of Cr, Mn, Co and Ni Addition on Crystallization Behavior of Al13Fe4 Phase in Al-5Fe Alloys Based on ThermoDynamic Calculations. Materials. 2021;14:768. doi: 10.3390/ma14040768. PubMed DOI PMC
Ning W., Zhang W., Zhao Y. Phase-Field Simulation for Evolution of Iron-Rich Phase during Solidification of Al–Si–Fe Alloys. J. Mater. Res. Technol. 2024;29:5495–5506. doi: 10.1016/j.jmrt.2024.03.023. DOI
Andreyachshenko V., Bartenev I., Malashkevichute-Brillant Y. Synthesizing of an Aluminum Alloy Rich in Iron and Silicon by Surfacing with a Consumable Electrode. Acta Metall. Slovaca. 2024;30:133–136. doi: 10.36547/ams.30.3.2065. DOI
Song D., Ponte Castañeda P. Fully Optimized Second-Order Homogenization Estimates for the Macroscopic Response and Texture Evolution of Low-Symmetry Viscoplastic Polycrystals. Int. J. Plast. 2018;110:272–293. doi: 10.1016/j.ijplas.2018.07.004. DOI
Gao Y., Ding J., Du C., Li D., Liang Q., Zheng Y., Wang D., Fraser H.L., Wang H.-Y., Wang Y. Unique Twinning Mode and Extended Twin Boundary Core Structure Associated with Symmetry Breaking in a Multifunctional Ti-Nb-Based Alloy. Acta Mater. 2025;286:120769. doi: 10.1016/j.actamat.2025.120769. DOI
Kunčická L., Kocich R. Comprehensive Characterisation of a Newly Developed Mg-Dy-Al-Zn-Zr Alloy Structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of Strain and Stress Conditions in Conventional and ARB Rolling Processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of Macroscopic Elastic Moduli of Martensitic Polycrystalline NiTi and NiTiCu Shape Memory Alloys with Pseudoplastic Straining. Acta Mater. 2017;123:146–156. doi: 10.1016/j.actamat.2016.10.024. DOI
Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI
Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-Channel Angular Pressing: Effect of the Strain Path on Grain Refinement and Mechanical Properties of Copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of Influence of Preparation and Heat Treatment on Deformation Behaviour of the Alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kocich R., Kursa M., Szurman I., Dlouhý A. The Influence of Imposed Strain on the Development of Microstructure and Transformation Characteristics of Ni–Ti Shape Memory Alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI
Andreyachshenko V.A., Ibatov M.K. Optimization of the Three-Component Al-Fe-Si System Composition. Metall. Res. Technol. 2024;121:315. doi: 10.1051/metal/2024035. DOI
Que Z., Fang C., Mendis C.L., Wang Y., Fan Z. Effects of Si Solution in θ-Al13Fe4 on Phase Transformation between Fe-Containing Intermetallic Compounds in Al Alloys. J. Alloys Compd. 2023;932:167587. doi: 10.1016/j.jallcom.2022.167587. DOI
Laplanche G., Bonneville J., Joulain A., Gauthier-Brunet V., Dubois S. Plasticity of the ω-Al7Cu2Fe Phase. J. Alloys Compd. 2016;665:144–151. doi: 10.1016/j.jallcom.2015.12.161. DOI
Chen F., He J., Li Y., Deng B., Zhu J., Yang H., Li M. Effect of Different Homogenization Times on the Mechanical Properties of 7075 Aluminum Alloy. J. Mater. Res. Technol. 2024;31:2582–2592. doi: 10.1016/j.jmrt.2024.07.010. DOI
Jin D., Li H., Yang C., Han Y., Zhu Z., Miao Y., Xu C., Chen B. The Effects of Mg and Si Contents on the Microstructure and Solidification Behavior of Dilute Al-Mg-Si-Fe Alloys. JOM. 2023;75:4845–4857. doi: 10.1007/s11837-023-06128-3. DOI
Song D., Jia Y., Li Q., Zhao Y., Zhang W. Effect of Initial Fe Content on Microstructure and Mechanical Properties of Recycled Al-7.0Si-Fe-Mn Alloys with Constant Mn/Fe Ratio. Materials. 2022;15:1618. doi: 10.3390/ma15041618. PubMed DOI PMC
de Rosso E., dos Santos C.A., Garcia A. Microstructure, Hardness, Tensile Strength, and Sliding Wear of Hypoeutectic Al–Si Cast Alloys with Small Cr Additions and Fe-Impurity Content. Adv. Eng. Mater. 2022;24:2001552. doi: 10.1002/adem.202001552. DOI
Elsharkawi E.A., MacNeil D., Chouraqui B., Chen X.-G. Exploring the Effect of Ni as an Impurity on Fe-Rich Phases in Simulated Direct Chill Casting Al–Fe-Si Alloys. Metallogr. Microstruct. Anal. 2022;11:724–735. doi: 10.1007/s13632-022-00894-3. DOI
Belov N.A., Alabin A.N., Matveeva I.A., Eskin D. Effect of Zr Additions and Annealing Temperature on Electrical Conductivity and Hardness of Hot Rolled Al Sheets. Trans. Nonferrous Met. Soc. China. 2015;25:2817–2826. doi: 10.1016/S1003-6326(15)63907-3. DOI
Kotiadis S., Zimmer A., Elsayed A., Vandersluis E., Ravindran C. High Electrical and Thermal Conductivity Cast Al-Fe-Mg-Si Alloys with Ni Additions. Metall. Mater. Trans. A. 2020;51:4195–4214. doi: 10.1007/s11661-020-05826-w. DOI
Walek J., Odehnalová A., Kocich R. Analysis of Thermophysical Properties of Electro Slag Remelting and Evaluation of Metallographic Cleanliness of Steel. Materials. 2024;17:4613. doi: 10.3390/ma17184613. PubMed DOI PMC