Analysis of Thermophysical Properties of Electro Slag Remelting and Evaluation of Metallographic Cleanliness of Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TQ03000386
Technology agency of the Czech Republic under the SIGMA Programme
SP2024/089
Specific Research of the VŠB-TUO
PubMed
39336354
PubMed Central
PMC11433104
DOI
10.3390/ma17184613
PII: ma17184613
Knihovny.cz E-zdroje
- Klíčová slova
- FactSage, electro slag remelting, metallographic cleanliness, non-metallic inclusions, slag, steel,
- Publikační typ
- časopisecké články MeSH
Improving the competitiveness of steel companies is linked to sustainable, quality-compliant steel production. Therefore, new steel production technologies contributing to increased cleanliness of steel are continuously being developed and optimized. One way to achieve a high steel quality is to use electro slag remelting (ESR) technology. In this paper, the principle of ESR technology and the importance of fused slags for optimizing the process are outlined. The aim of this work was to analyze the main thermophysical properties of steel and fused slags used in the ESR process. Determination of the properties of steel and slags was performed using the FactSage calculation software, which involved the calculation of the liquid and solid temperature of steel and slags, the calculation and construction of quaternary diagrams, and the calculation of viscosity. The resulting quaternary diagrams revealed the substantial influence of chemical composition on melting temperatures of slags. In order to validate the acquired results, a CrNiMoV-type steel was subjected to investigation of its metallographic cleanliness and evaluation of its mechanical properties; the ESR process was shown to significantly improve the cleanliness of the steel and improve the mechanical properties of the steel compared to its cleanliness and quality when produced via vacuum degassing (VD) technology. During the ESR process, the average size of non-metallic inclusions was reduced from 20 μm to 10 μm, and the maximum size of non-metallic inclusions was reduced from 50 μm to 28 μm. The mechanical properties of the steel produced using ESR technology were impacted as follows: the ductility increased by 10%, contraction increased by 18%, notched toughness at 20 °C increased by 46%, and at -40 °C (respectively -50 °C) it increased by 30%.
Zobrazit více v PubMed
Macháčková A., Kocich R., Bojko M., Kunčická L., Polko K. Numerical and experimental investigation of flue gases heat recovery via condensing heat exchanger. Int. J. Heat Mass Trans. 2018;124:1321–1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.051. DOI
Král P., Blum W., Dvořák J., Yurchenko N., Stepanov N., Zherebtsov S., Kunčická L., Kvapilová M., Sklenička V. Creep behavior of an AlTiVNbZr0.25 high entropy alloy at 1073 K. Mater. Sci. Eng. A. 2020;783:139291. doi: 10.1016/j.msea.2020.139291. DOI
Kunčická L., Kocich R. Comprehensive Characterisation of a Newly Developed Mg-Dy-Al-Zn-Zr Alloy Structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni-Ti shape memory alloys. J. Alloys Comp. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI
Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI
Weber V., Jardy A., Dussoubs B., Ablitzer D., Rybéron S., Schmitt V., Hans S., Poisson H. A Comprehensive Model of the Electroslag Remelting Process: Description and Validation. Metall. Mater. Trans. B. 2009;40:271–280. doi: 10.1007/s11663-008-9208-9. DOI
Shi C., Chen X., Guo H., Zhu Z., Ren H. Assessment of Oxygen Control and Its Effect on Inclusion Characteristics during Electroslag Remelting of Die Steel. Steel Res. Int. 2012;83:472–486. doi: 10.1002/srin.201100200. DOI
Li S., Cheng G., Miao Z., Chen L., Li C., Jiang X. Kinetic Analysis of Aluminum and Oxygen Variation of G20CrNi2Mo Bearing Steel during Industrial Electroslag Remelting Process. ISIJ Int. 2017;57:2148–2156. doi: 10.2355/isijinternational.ISIJINT-2017-227. DOI
Wang Q., Ye Q., Fu T., Wang Z. Superior Through-Thickness Homogeneity of Microstructure and Mechanical Properties of Ultraheavy Steel Plate by Advanced Casting and Quenching Technologies. Steel Res. Int. 2021;92:2000698. doi: 10.1002/srin.202000698. DOI
Ju J., Zhu Z., Gu Y., Yang K., Zhang Q. Evolution of Inclusions in Incoloy825 during Electroslag Remelting. Metals. 2021;12:208. doi: 10.3390/met12020208. DOI
Liu H., Liu J., Michelic S., Wei F., Zhuang C., Han Z., Li S. Characteristics of AIN inclusions in low carbon Fe-Mn-Si-Al TWIP steel produced by AOD-ESR method. Ironmak. Steelmak. 2016;43:171–179. doi: 10.1179/1743281215Y.0000000028. DOI
Guo X., Liu Y., Jojo-Cunningham Y., Silaen A., Walla N., Zhou C. Mixing Time Prediction in a Ladle Furnace. Metals. 2024;14:518. doi: 10.3390/met14050518. DOI
Artyushov V.N., Bochkarev S.P., Igolkin S.V., Makarevich A.N., Fomchenko S.M. Mastering a Technology for Making Stainless Steel on a VOD Unit at the Chelyabinsk Metallurgical Combine. Metallurgist. 2013;57:292–294. doi: 10.1007/s11015-013-9726-9. DOI
Malayeri K.M. Vacuum degassing impact on non-metallic inclusions during clean steelmaking. Ironmak. Steelmak. 2023;50:878–883. doi: 10.1080/03019233.2023.2208987. DOI
Tridello A., Paolino D.S., Chiandussi G., Rossetto M. Effect of electroslag remelting on the VHCF response of an AISI H13 steel. Fatique Fract. Eng. Mater. Struct. 2017;40:1783–1794. doi: 10.1111/ffe.12696. DOI
Hu J., Wang X., Yang S., Ma J., Hao Y., Zhang P. Microstructure and mechanical properties investigation of carbon/stainless steel composite rod prepared by a special device. Mater. Lett. 2023;352:135195. doi: 10.1016/j.matlet.2023.135195. DOI
Sun C., Li J., Zhang J., Yan W., Li S. Formation and evolution of primary carbides in high-carbon martensitic stainless steel. J. Iron Steel Res. Int. 2023;30:2000–2009. doi: 10.1007/s42243-022-00856-7. DOI
Kang C., Liu F., Geng X., Jiang Z., Chen K., Gao J., An R. Desulfurization Behavior of Low-sulfur Plastic Die Steel during ESR Process under Different Atmospheres. ISIJ Int. 2021;61:219–228. doi: 10.2355/isijinternational.ISIJINT-2020-421. DOI
Huang X., Duan Y., Liu Z., Li B., Wang F. Role of Electrode Rotation on Improvement of Metal Pool Profile in Electroslag Remelting Process. Metals. 2021;11:1675. doi: 10.3390/met11111675. DOI
Shi C., Huang Y., Zhang J., Li J., Zheng X. Review on desulfurization in electroslag remelting. Int. J. Miner. Metall. Mater. 2021;28:18–29. doi: 10.1007/s12613-020-2075-3. DOI
Boštajn A., Podgornik B., Burja J. Electroslag Remelting: A Process Overview. Mater. Technol. 2016;50:971–979.
Li W., Wang W., Hu Y., Chen Y. The Estimation and Control of the Electroslag Remelting Melt Rate by Mechanism-Based Modeling. Metall. Mater. Trans. B. 2012;43:276–289. doi: 10.1007/s11663-011-9606-2. DOI
Yan W., Zhang Y., Chen W., Li J. Characteristics and Formation Tendency of Freckle Segregation in Electroslag Remelted Bearing Steel. Metals. 2020;10:246. doi: 10.3390/met10020246. DOI
Shi C. Deoxidation of Electroslag Remelting (ESR)—A Review. ISIJ Int. 2020;60:1083–1096. doi: 10.2355/isijinternational.ISIJINT-2019-661. DOI
Hou D., Jiang Z., Dong Y., Li Y., Gong W., Liu F. Mass Transfer Model of Desulfurization in the Electroslag Remelting Process. Metall. Mater. Trans. 2017;48:1885–1897. doi: 10.1007/s11663-017-0921-0. DOI
Wang Q., He Z., Li G., Li B., Zhu C., Chen P. Numerical investigation of desulfurization behavior in electroslag remelting process. Int. J. Heat Mass Transf. 2017;104:943–951. doi: 10.1016/j.ijheatmasstransfer.2016.09.022. DOI
Karimi-Sibaki E., Khricha A., Vakhrushev A., Wu M., Ludwig A., Bohacek J. Investigation of effect of electrode polarity on electrochemistry and magnetohydrodynamics using tertiary current distribution in electroslag remelting process. J. Iron Steel Res. Int. 2021;28:1551–1561. doi: 10.1007/s42243-021-00686-z. DOI
Wang Q., Liu Y., Lu R., Wang F., He Z., Li G. Influence of Electro-Emulsification on Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process. Metall. Mater. Trans. B. 2020;52:107–122. doi: 10.1007/s11663-020-02005-5. DOI
Sun D., Wang Y., Jin L., Pang Z., Huang J., Zhang J. Controlling oxygen content in electro-slag remelting steel by optimizing slag-steel reaction process. China Foundry. 2023;20:503–510. doi: 10.1007/s41230-023-2062-1. DOI
Wang B., Wang Y., Wang M., Zhao L. Effect of electrical parameters and slag system on macrostructure of electroslag ingot. China Foundry. 2024;21:44–50. doi: 10.1007/s41230-024-3064-3. DOI
Huang Y., Shi C., Wan X., Liang Y., Li J., Liu S. Viscosity and surface tension of CaF2–CaO–Al2O3-based slag with varying SiO2 and B2O3 contents for ESR of rotor steel. J. Iron Steel Res. Int. 2023;30:74–81. doi: 10.1007/s42243-022-00861-w. DOI
Schneider R.S.E., Molnar M., Gelder S., Reiter G., Martinez C. Effect of the Slag Composition and a Protective Atmosphere on Chemical Reactions and Non-Metallic Inclusions during Electro-Slag Remelting of a Hot-Work Tool Steel. Steel Res. Int. 2018;89:1800161. doi: 10.1002/srin.201800161. DOI
Jiang M., Li K., Wang R., Yang E., Wang X. Cleanliness and Control of Inclusions in Al-Deoxidized Bearing Steel Refined by Basic Slags during LF-VD-Ar Bubbling. ISIJ Int. 2022;62:124–132. doi: 10.2355/isijinternational.ISIJINT-2021-306. DOI
Duan S., Shi X., Zhang M., Li B., Yang W., Wang F., Guo H., Guo J. Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition. Metall. Mater. Trans. B. 2020;51:353–364. doi: 10.1007/s11663-019-01729-3. DOI
Zhao J., Chen Y., Li X., Cui Y., Lu X. Mechanism of Slag Composition Change During Electroslag Remelting Process. J. Iron Steel Res. Int. 2011;18:24–53. doi: 10.1016/S1006-706X(12)60017-X. DOI
Du Y., Dong Y., Jiang Z., Stovpchenko G., Li Y., Huang J., Wang X., Liu Y. Dissolution kinetics and reaction mechanism of Al2O3 in molten CaF2–CaO–Al2O3 slag. J. Iron Steel Res. Int. 2024;31:861–869. doi: 10.1007/s42243-023-01112-2. DOI
Li S., Li J., Zhang J., Shi C. Effect of nitrogen on microstructure and microsegregation of martensitic stainless steel 4Cr13 produced by electroslag remelting. J. Iron Steel Res. Int. 2023;30:1854–1861. doi: 10.1007/s42243-022-00851-y. DOI
Persson E.S., Brorson S., Mitchell A., Jonsson P.G. Impact of Solidification on Inclusion Morphology in ESR and PESR Remelted Martensitic Stainless Steel Ingots. Metals. 2021;11:408. doi: 10.3390/met11030408. DOI
Brooksbank D., Andrews K.W. Stress fields around inclusions and their relation to mechanical properties. JISI. 1972;210:246–255.
Kiessling R., Lange N. Non-Metallic Inclusions in Steel. Metals Society; London, UK: 1976. pp. 74–101.
Gladman T. Sulphide Inclusions in Steel. ASM; New York, NY, USA: 1974. pp. 273–285.
Schneider R.S.E., Molnar M., Klosch G., Schuller C. Effect of the Al2O3 Content in the Slag on the Chemical Reactions and Nonmetallic Inclusions during Electroslag Remelting. Metall. Mater. Trans. B. 2020;51:1904–1911. doi: 10.1007/s11663-020-01896-8. DOI
Shi C., Wang H., Li J. Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of Inclusions During Electroslag Remelting. Metall. Mater. Trans. B. 2018;49:1675–1689. doi: 10.1007/s11663-018-1296-6. DOI
Schneider R., Wiesinger V., Gelder S., Reiter G. Effect of the Slag Composition on the Process Behavior, Energy Consumption, and Nonmetallic Inclusions during Electroslag Remelting. Steel Res. Int. 2023;94:2200483. doi: 10.1002/srin.202200483. DOI
Li S., Cheng G., Miao Z., Chen L., Jiang X. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int. J. Miner. Metall. Mater. 2019;26:291–300. doi: 10.1007/s12613-019-1737-5. DOI
Xuan C., Persson E.S., Sevastopolev R., Nzotta M. Motion and Detachment Behaviors of Liquid Inclusion at Molten Steel-Slag Interfaces. Metall. Mater. Trans. B. 2019;50:1957–1973. doi: 10.1007/s11663-019-01568-2. DOI
Franceschini A., Ruby-Meyer F., Midroit F., Diawara B., Hans S., Poulain T., Trempint C., Hénault E., Roufié A. An assessment of cleanliness techniques for low alloyed steel grades. Metall. Res. Technol. 2019;116:509. doi: 10.1051/metal/2018128. DOI
Persson E.S., Karasev A., Mitchell A., Jonsson P.G. Origin of the Inclusions in Production-Scale Electrodes, ESR Ingots, and PESR Ingots in a Martensitic Stainless Steel. Metals. 2020;10:1620. doi: 10.3390/met10121620. DOI
Liu M., Bernhard M., Kawuloková M., Walek J., Kern M., Zlá P., Presoly P., Smetana B., Tkadlečková M., Xu G., et al. Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometry. J. Mater. Res. Technol. 2023;24:3534–3547. doi: 10.1016/j.jmrt.2023.04.009. DOI
Ahmadian P., Taghizadeh M. The effect of non-metallic inclusion size and orientation on tensile properties of stainless steel (simulation and experiment) Metall. Mater. Eng. 2020;26:43–55. doi: 10.30544/471. DOI
Řeháčková L., Novák V., Tokarský J., Heger M., Zimný O., Matýsek D., Peikertová P., Ritz M., Walek J., Leinweberová S. Rheological behaviour of CaO-MgO-SiO2-Al2O3-B2O3 system with varying B2O3 content up to 30 wt% at basicity of 0.4. Ceram. Int. 2024;50:1389–1397. doi: 10.1016/j.ceramint.2023.10.228. DOI
Zhang G., Hu Y., Hou D., Yang D., Zhang Q., Hu Y., Liu X. Assessment of Porosity Defects in Ingot Using Machine Learning Methods during Electro Slag Remelting Process. Metals. 2022;12:958. doi: 10.3390/met12060958. DOI
Wang J., Song S., Xue Z. Transient evolution of non-metallic inclusions in molten high aluminum and high manganese steel contacting with slag and crucible: Experimental investigation and FactSage macros modeling. J. Mater. Res. Technol. 2023;25:2841–2853. doi: 10.1016/j.jmrt.2023.06.025. DOI
Singha P., Shukla A. Contribution of Hot-Spot Zone in Decarburization of BOF Steel-Making: Fundamental Analysis Based upon the FactSage-Macro Program. Metals. 2022;12:638. doi: 10.3390/met12040638. DOI
Jung I., Van Ende M. Computational Thermodynamic Calculations: FactSage from CALPHAD Thermodynamic Database to Virtual Process Simulation. Metall. Mater. Trans. B. 2020;51:1851–1874. doi: 10.1007/s11663-020-01908-7. DOI
Ren Y., Zhang Y., Zhang L. A kinetic model for Ca treatment of Al-killed steels using FactSage macro processing. Ironmak. Steelmak. 2017;44:497–504. doi: 10.1080/03019233.2016.1216632. DOI
Vidhyasagar M., Kumar D., Viswanathan N. A Static Model for Energy-Optimizing Furnace. Steel Res. Int. 2022;93:2200185. doi: 10.1002/srin.202200185. DOI
Wang Z., Song T., Zhao L., Bao Y. Study on Efficient Dephosphorization in Converter Based on Thermodynamic Calculation. Crystals. 2023;13:1132. doi: 10.3390/cryst13071132. DOI
Metallographic Examination–Microcopic Examination of Special Steels Using Standard Diagrams to Assess the Content of Non-Metallic Inclusions; UDC 669.14:620.186.14. Deutsches Institut fur Normung (DIN); Berlin, Germany: 1985.
Jiang Z., Hou D., Dong Y., Cao Y., Cao H., Gong W. Effect of Slag on Titanium, Silicon, and Aluminium Contents in Superalloy During Electroslag Remelting. Metall. Mater. Trans. B. 2016;47:1465–1474. doi: 10.1007/s11663-015-0530-8. DOI
Peng L., Jiang Z., Geng X. Design of ESR slag for remelting 9CrMoCoB steel through experiments and thermodynamic calculations. Calphad. 2020;70:101782. doi: 10.1016/j.calphad.2020.101782. DOI
Hou D., Wang D., Qu T., Tian J., Wang H. Kinetic Study on Alloying Element Transfer During an Electroslag Remelting Process. Metall. Mater. Trans. B. 2019;50:3088–3102. doi: 10.1007/s11663-019-01690-1. DOI
Shi C., Wang S., Li J., Cho J. Non-metallic inclusions in electroslag remelting: A review. J. Iron Steel Res. Int. 2021;28:1483–1503. doi: 10.1007/s42243-021-00700-4. DOI
Kunčická L., Kocich R. Optimizing electric conductivity of innovative Al-Cu laminated composites via thermomechanical treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling process. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Kocich R., Kunčická L. Develpoment of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sand. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of post process shear straining on structure and mechanical properties of 316L stainless steel manufactured via powder bed fusion. Add. Manuf. 2022;59:103128.
Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformaiton. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC
Technological Alloying Impact on Formation of Phase Composition of Al-Fe-Si-X Alloys
Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting