Analysis of Thermophysical Properties of Electro Slag Remelting and Evaluation of Metallographic Cleanliness of Steel

. 2024 Sep 20 ; 17 (18) : . [epub] 20240920

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39336354

Grantová podpora
TQ03000386 Technology agency of the Czech Republic under the SIGMA Programme
SP2024/089 Specific Research of the VŠB-TUO

Improving the competitiveness of steel companies is linked to sustainable, quality-compliant steel production. Therefore, new steel production technologies contributing to increased cleanliness of steel are continuously being developed and optimized. One way to achieve a high steel quality is to use electro slag remelting (ESR) technology. In this paper, the principle of ESR technology and the importance of fused slags for optimizing the process are outlined. The aim of this work was to analyze the main thermophysical properties of steel and fused slags used in the ESR process. Determination of the properties of steel and slags was performed using the FactSage calculation software, which involved the calculation of the liquid and solid temperature of steel and slags, the calculation and construction of quaternary diagrams, and the calculation of viscosity. The resulting quaternary diagrams revealed the substantial influence of chemical composition on melting temperatures of slags. In order to validate the acquired results, a CrNiMoV-type steel was subjected to investigation of its metallographic cleanliness and evaluation of its mechanical properties; the ESR process was shown to significantly improve the cleanliness of the steel and improve the mechanical properties of the steel compared to its cleanliness and quality when produced via vacuum degassing (VD) technology. During the ESR process, the average size of non-metallic inclusions was reduced from 20 μm to 10 μm, and the maximum size of non-metallic inclusions was reduced from 50 μm to 28 μm. The mechanical properties of the steel produced using ESR technology were impacted as follows: the ductility increased by 10%, contraction increased by 18%, notched toughness at 20 °C increased by 46%, and at -40 °C (respectively -50 °C) it increased by 30%.

Zobrazit více v PubMed

Macháčková A., Kocich R., Bojko M., Kunčická L., Polko K. Numerical and experimental investigation of flue gases heat recovery via condensing heat exchanger. Int. J. Heat Mass Trans. 2018;124:1321–1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.051. DOI

Král P., Blum W., Dvořák J., Yurchenko N., Stepanov N., Zherebtsov S., Kunčická L., Kvapilová M., Sklenička V. Creep behavior of an AlTiVNbZr0.25 high entropy alloy at 1073 K. Mater. Sci. Eng. A. 2020;783:139291. doi: 10.1016/j.msea.2020.139291. DOI

Kunčická L., Kocich R. Comprehensive Characterisation of a Newly Developed Mg-Dy-Al-Zn-Zr Alloy Structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI

Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni-Ti shape memory alloys. J. Alloys Comp. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI

Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI

Weber V., Jardy A., Dussoubs B., Ablitzer D., Rybéron S., Schmitt V., Hans S., Poisson H. A Comprehensive Model of the Electroslag Remelting Process: Description and Validation. Metall. Mater. Trans. B. 2009;40:271–280. doi: 10.1007/s11663-008-9208-9. DOI

Shi C., Chen X., Guo H., Zhu Z., Ren H. Assessment of Oxygen Control and Its Effect on Inclusion Characteristics during Electroslag Remelting of Die Steel. Steel Res. Int. 2012;83:472–486. doi: 10.1002/srin.201100200. DOI

Li S., Cheng G., Miao Z., Chen L., Li C., Jiang X. Kinetic Analysis of Aluminum and Oxygen Variation of G20CrNi2Mo Bearing Steel during Industrial Electroslag Remelting Process. ISIJ Int. 2017;57:2148–2156. doi: 10.2355/isijinternational.ISIJINT-2017-227. DOI

Wang Q., Ye Q., Fu T., Wang Z. Superior Through-Thickness Homogeneity of Microstructure and Mechanical Properties of Ultraheavy Steel Plate by Advanced Casting and Quenching Technologies. Steel Res. Int. 2021;92:2000698. doi: 10.1002/srin.202000698. DOI

Ju J., Zhu Z., Gu Y., Yang K., Zhang Q. Evolution of Inclusions in Incoloy825 during Electroslag Remelting. Metals. 2021;12:208. doi: 10.3390/met12020208. DOI

Liu H., Liu J., Michelic S., Wei F., Zhuang C., Han Z., Li S. Characteristics of AIN inclusions in low carbon Fe-Mn-Si-Al TWIP steel produced by AOD-ESR method. Ironmak. Steelmak. 2016;43:171–179. doi: 10.1179/1743281215Y.0000000028. DOI

Guo X., Liu Y., Jojo-Cunningham Y., Silaen A., Walla N., Zhou C. Mixing Time Prediction in a Ladle Furnace. Metals. 2024;14:518. doi: 10.3390/met14050518. DOI

Artyushov V.N., Bochkarev S.P., Igolkin S.V., Makarevich A.N., Fomchenko S.M. Mastering a Technology for Making Stainless Steel on a VOD Unit at the Chelyabinsk Metallurgical Combine. Metallurgist. 2013;57:292–294. doi: 10.1007/s11015-013-9726-9. DOI

Malayeri K.M. Vacuum degassing impact on non-metallic inclusions during clean steelmaking. Ironmak. Steelmak. 2023;50:878–883. doi: 10.1080/03019233.2023.2208987. DOI

Tridello A., Paolino D.S., Chiandussi G., Rossetto M. Effect of electroslag remelting on the VHCF response of an AISI H13 steel. Fatique Fract. Eng. Mater. Struct. 2017;40:1783–1794. doi: 10.1111/ffe.12696. DOI

Hu J., Wang X., Yang S., Ma J., Hao Y., Zhang P. Microstructure and mechanical properties investigation of carbon/stainless steel composite rod prepared by a special device. Mater. Lett. 2023;352:135195. doi: 10.1016/j.matlet.2023.135195. DOI

Sun C., Li J., Zhang J., Yan W., Li S. Formation and evolution of primary carbides in high-carbon martensitic stainless steel. J. Iron Steel Res. Int. 2023;30:2000–2009. doi: 10.1007/s42243-022-00856-7. DOI

Kang C., Liu F., Geng X., Jiang Z., Chen K., Gao J., An R. Desulfurization Behavior of Low-sulfur Plastic Die Steel during ESR Process under Different Atmospheres. ISIJ Int. 2021;61:219–228. doi: 10.2355/isijinternational.ISIJINT-2020-421. DOI

Huang X., Duan Y., Liu Z., Li B., Wang F. Role of Electrode Rotation on Improvement of Metal Pool Profile in Electroslag Remelting Process. Metals. 2021;11:1675. doi: 10.3390/met11111675. DOI

Shi C., Huang Y., Zhang J., Li J., Zheng X. Review on desulfurization in electroslag remelting. Int. J. Miner. Metall. Mater. 2021;28:18–29. doi: 10.1007/s12613-020-2075-3. DOI

Boštajn A., Podgornik B., Burja J. Electroslag Remelting: A Process Overview. Mater. Technol. 2016;50:971–979.

Li W., Wang W., Hu Y., Chen Y. The Estimation and Control of the Electroslag Remelting Melt Rate by Mechanism-Based Modeling. Metall. Mater. Trans. B. 2012;43:276–289. doi: 10.1007/s11663-011-9606-2. DOI

Yan W., Zhang Y., Chen W., Li J. Characteristics and Formation Tendency of Freckle Segregation in Electroslag Remelted Bearing Steel. Metals. 2020;10:246. doi: 10.3390/met10020246. DOI

Shi C. Deoxidation of Electroslag Remelting (ESR)—A Review. ISIJ Int. 2020;60:1083–1096. doi: 10.2355/isijinternational.ISIJINT-2019-661. DOI

Hou D., Jiang Z., Dong Y., Li Y., Gong W., Liu F. Mass Transfer Model of Desulfurization in the Electroslag Remelting Process. Metall. Mater. Trans. 2017;48:1885–1897. doi: 10.1007/s11663-017-0921-0. DOI

Wang Q., He Z., Li G., Li B., Zhu C., Chen P. Numerical investigation of desulfurization behavior in electroslag remelting process. Int. J. Heat Mass Transf. 2017;104:943–951. doi: 10.1016/j.ijheatmasstransfer.2016.09.022. DOI

Karimi-Sibaki E., Khricha A., Vakhrushev A., Wu M., Ludwig A., Bohacek J. Investigation of effect of electrode polarity on electrochemistry and magnetohydrodynamics using tertiary current distribution in electroslag remelting process. J. Iron Steel Res. Int. 2021;28:1551–1561. doi: 10.1007/s42243-021-00686-z. DOI

Wang Q., Liu Y., Lu R., Wang F., He Z., Li G. Influence of Electro-Emulsification on Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process. Metall. Mater. Trans. B. 2020;52:107–122. doi: 10.1007/s11663-020-02005-5. DOI

Sun D., Wang Y., Jin L., Pang Z., Huang J., Zhang J. Controlling oxygen content in electro-slag remelting steel by optimizing slag-steel reaction process. China Foundry. 2023;20:503–510. doi: 10.1007/s41230-023-2062-1. DOI

Wang B., Wang Y., Wang M., Zhao L. Effect of electrical parameters and slag system on macrostructure of electroslag ingot. China Foundry. 2024;21:44–50. doi: 10.1007/s41230-024-3064-3. DOI

Huang Y., Shi C., Wan X., Liang Y., Li J., Liu S. Viscosity and surface tension of CaF2–CaO–Al2O3-based slag with varying SiO2 and B2O3 contents for ESR of rotor steel. J. Iron Steel Res. Int. 2023;30:74–81. doi: 10.1007/s42243-022-00861-w. DOI

Schneider R.S.E., Molnar M., Gelder S., Reiter G., Martinez C. Effect of the Slag Composition and a Protective Atmosphere on Chemical Reactions and Non-Metallic Inclusions during Electro-Slag Remelting of a Hot-Work Tool Steel. Steel Res. Int. 2018;89:1800161. doi: 10.1002/srin.201800161. DOI

Jiang M., Li K., Wang R., Yang E., Wang X. Cleanliness and Control of Inclusions in Al-Deoxidized Bearing Steel Refined by Basic Slags during LF-VD-Ar Bubbling. ISIJ Int. 2022;62:124–132. doi: 10.2355/isijinternational.ISIJINT-2021-306. DOI

Duan S., Shi X., Zhang M., Li B., Yang W., Wang F., Guo H., Guo J. Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition. Metall. Mater. Trans. B. 2020;51:353–364. doi: 10.1007/s11663-019-01729-3. DOI

Zhao J., Chen Y., Li X., Cui Y., Lu X. Mechanism of Slag Composition Change During Electroslag Remelting Process. J. Iron Steel Res. Int. 2011;18:24–53. doi: 10.1016/S1006-706X(12)60017-X. DOI

Du Y., Dong Y., Jiang Z., Stovpchenko G., Li Y., Huang J., Wang X., Liu Y. Dissolution kinetics and reaction mechanism of Al2O3 in molten CaF2–CaO–Al2O3 slag. J. Iron Steel Res. Int. 2024;31:861–869. doi: 10.1007/s42243-023-01112-2. DOI

Li S., Li J., Zhang J., Shi C. Effect of nitrogen on microstructure and microsegregation of martensitic stainless steel 4Cr13 produced by electroslag remelting. J. Iron Steel Res. Int. 2023;30:1854–1861. doi: 10.1007/s42243-022-00851-y. DOI

Persson E.S., Brorson S., Mitchell A., Jonsson P.G. Impact of Solidification on Inclusion Morphology in ESR and PESR Remelted Martensitic Stainless Steel Ingots. Metals. 2021;11:408. doi: 10.3390/met11030408. DOI

Brooksbank D., Andrews K.W. Stress fields around inclusions and their relation to mechanical properties. JISI. 1972;210:246–255.

Kiessling R., Lange N. Non-Metallic Inclusions in Steel. Metals Society; London, UK: 1976. pp. 74–101.

Gladman T. Sulphide Inclusions in Steel. ASM; New York, NY, USA: 1974. pp. 273–285.

Schneider R.S.E., Molnar M., Klosch G., Schuller C. Effect of the Al2O3 Content in the Slag on the Chemical Reactions and Nonmetallic Inclusions during Electroslag Remelting. Metall. Mater. Trans. B. 2020;51:1904–1911. doi: 10.1007/s11663-020-01896-8. DOI

Shi C., Wang H., Li J. Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of Inclusions During Electroslag Remelting. Metall. Mater. Trans. B. 2018;49:1675–1689. doi: 10.1007/s11663-018-1296-6. DOI

Schneider R., Wiesinger V., Gelder S., Reiter G. Effect of the Slag Composition on the Process Behavior, Energy Consumption, and Nonmetallic Inclusions during Electroslag Remelting. Steel Res. Int. 2023;94:2200483. doi: 10.1002/srin.202200483. DOI

Li S., Cheng G., Miao Z., Chen L., Jiang X. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int. J. Miner. Metall. Mater. 2019;26:291–300. doi: 10.1007/s12613-019-1737-5. DOI

Xuan C., Persson E.S., Sevastopolev R., Nzotta M. Motion and Detachment Behaviors of Liquid Inclusion at Molten Steel-Slag Interfaces. Metall. Mater. Trans. B. 2019;50:1957–1973. doi: 10.1007/s11663-019-01568-2. DOI

Franceschini A., Ruby-Meyer F., Midroit F., Diawara B., Hans S., Poulain T., Trempint C., Hénault E., Roufié A. An assessment of cleanliness techniques for low alloyed steel grades. Metall. Res. Technol. 2019;116:509. doi: 10.1051/metal/2018128. DOI

Persson E.S., Karasev A., Mitchell A., Jonsson P.G. Origin of the Inclusions in Production-Scale Electrodes, ESR Ingots, and PESR Ingots in a Martensitic Stainless Steel. Metals. 2020;10:1620. doi: 10.3390/met10121620. DOI

Liu M., Bernhard M., Kawuloková M., Walek J., Kern M., Zlá P., Presoly P., Smetana B., Tkadlečková M., Xu G., et al. Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometry. J. Mater. Res. Technol. 2023;24:3534–3547. doi: 10.1016/j.jmrt.2023.04.009. DOI

Ahmadian P., Taghizadeh M. The effect of non-metallic inclusion size and orientation on tensile properties of stainless steel (simulation and experiment) Metall. Mater. Eng. 2020;26:43–55. doi: 10.30544/471. DOI

Řeháčková L., Novák V., Tokarský J., Heger M., Zimný O., Matýsek D., Peikertová P., Ritz M., Walek J., Leinweberová S. Rheological behaviour of CaO-MgO-SiO2-Al2O3-B2O3 system with varying B2O3 content up to 30 wt% at basicity of 0.4. Ceram. Int. 2024;50:1389–1397. doi: 10.1016/j.ceramint.2023.10.228. DOI

Zhang G., Hu Y., Hou D., Yang D., Zhang Q., Hu Y., Liu X. Assessment of Porosity Defects in Ingot Using Machine Learning Methods during Electro Slag Remelting Process. Metals. 2022;12:958. doi: 10.3390/met12060958. DOI

Wang J., Song S., Xue Z. Transient evolution of non-metallic inclusions in molten high aluminum and high manganese steel contacting with slag and crucible: Experimental investigation and FactSage macros modeling. J. Mater. Res. Technol. 2023;25:2841–2853. doi: 10.1016/j.jmrt.2023.06.025. DOI

Singha P., Shukla A. Contribution of Hot-Spot Zone in Decarburization of BOF Steel-Making: Fundamental Analysis Based upon the FactSage-Macro Program. Metals. 2022;12:638. doi: 10.3390/met12040638. DOI

Jung I., Van Ende M. Computational Thermodynamic Calculations: FactSage from CALPHAD Thermodynamic Database to Virtual Process Simulation. Metall. Mater. Trans. B. 2020;51:1851–1874. doi: 10.1007/s11663-020-01908-7. DOI

Ren Y., Zhang Y., Zhang L. A kinetic model for Ca treatment of Al-killed steels using FactSage macro processing. Ironmak. Steelmak. 2017;44:497–504. doi: 10.1080/03019233.2016.1216632. DOI

Vidhyasagar M., Kumar D., Viswanathan N. A Static Model for Energy-Optimizing Furnace. Steel Res. Int. 2022;93:2200185. doi: 10.1002/srin.202200185. DOI

Wang Z., Song T., Zhao L., Bao Y. Study on Efficient Dephosphorization in Converter Based on Thermodynamic Calculation. Crystals. 2023;13:1132. doi: 10.3390/cryst13071132. DOI

Metallographic Examination–Microcopic Examination of Special Steels Using Standard Diagrams to Assess the Content of Non-Metallic Inclusions; UDC 669.14:620.186.14. Deutsches Institut fur Normung (DIN); Berlin, Germany: 1985.

Jiang Z., Hou D., Dong Y., Cao Y., Cao H., Gong W. Effect of Slag on Titanium, Silicon, and Aluminium Contents in Superalloy During Electroslag Remelting. Metall. Mater. Trans. B. 2016;47:1465–1474. doi: 10.1007/s11663-015-0530-8. DOI

Peng L., Jiang Z., Geng X. Design of ESR slag for remelting 9CrMoCoB steel through experiments and thermodynamic calculations. Calphad. 2020;70:101782. doi: 10.1016/j.calphad.2020.101782. DOI

Hou D., Wang D., Qu T., Tian J., Wang H. Kinetic Study on Alloying Element Transfer During an Electroslag Remelting Process. Metall. Mater. Trans. B. 2019;50:3088–3102. doi: 10.1007/s11663-019-01690-1. DOI

Shi C., Wang S., Li J., Cho J. Non-metallic inclusions in electroslag remelting: A review. J. Iron Steel Res. Int. 2021;28:1483–1503. doi: 10.1007/s42243-021-00700-4. DOI

Kunčická L., Kocich R. Optimizing electric conductivity of innovative Al-Cu laminated composites via thermomechanical treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI

Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling process. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI

Kocich R., Kunčická L. Develpoment of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sand. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of post process shear straining on structure and mechanical properties of 316L stainless steel manufactured via powder bed fusion. Add. Manuf. 2022;59:103128.

Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformaiton. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...