Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35759353
PubMed Central
PMC9284517
DOI
10.1021/acsami.2c05939
Knihovny.cz E-zdroje
- Klíčová slova
- Laue microdiffraction, bespoke NiTi shape memory alloys, grain structure, lattice rotation, multiscale, phase transformation, powder diffraction,
- Publikační typ
- časopisecké články MeSH
To explore an effective route of customizing the superelasticity (SE) of NiTi shape memory alloys via modifying the grain structure, binary Ni55Ti45 (wt) alloys were fabricated in as-cast, hot swaged, and hot-rolled conditions, presenting contrasting grain sizes and grain boundary types. In situ synchrotron X-ray Laue microdiffraction and in situ synchrotron X-ray powder diffraction techniques were employed to unravel the underlying grain structure mechanisms that cause the diversity of SE performance among the three materials. The evolution of lattice rotation, strain field, and phase transformation has been revealed at the micro- and mesoscale, and the effect of grain structure on SE performance has been quantified. It was found that (i) the Ni4Ti3 and NiTi2 precipitates are similar among the three materials in terms of morphology, size, and orientation distribution; (ii) phase transformation happens preferentially near high-angle grain boundary (HAGB) yet randomly in low-angle grain boundary (LAGB) structures; (iii) the smaller the grain size, the higher the phase transformation nucleation kinetics, and the lower the propagation kinetics; (iv) stress concentration happens near HAGBs, while no obvious stress concentration can be observed in the LAGB grain structure during loading; (v) the statistical distribution of strain in the three materials becomes asymmetric during loading; (vi) three grain lattice rotation modes are identified and termed for the first time, namely, multi-extension rotation, rigid rotation, and nondispersive rotation; and (vii) the texture evolution of B2 austenite and B19' martensite is not strongly dependent on the grain structure.
CRG IF BM32 Beamline European Synchrotron Radiation Facility 38043 Grenoble Cedex 9 France
Diamond Light Source Harwell Campus Oxfordshire OX11 0DE U K
MBLEM Department of Engineering Science University of Oxford Oxford OX1 3PJ U K
Université Grenoble Alpes CEA Grenoble IRIG 38043 Grenoble Cedex 9 France
Zobrazit více v PubMed
Wang Z.; Chen J.; Besnard C.; Kuncicka L.; Kocich R.; Korsunsky A. M. In-situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021, 202, 135–148. 10.1016/j.actamat.2020.10.049. DOI
Wang Z.; Korsunsky A. M. Effect of Temperature on Shape Memory Materials. Encyclopedia of Smart Materials 2022, 4, 239–253. 10.1016/B978-0-12-803581-8.11793-X. DOI
Ahadi A.; Sun Q. Effects of grain size on the rate-dependent thermomechanical response of nanostructured superelastic NiTi. Acta Mater. 2014, 76, 186–197. 10.1016/j.actamat.2014.05.007. DOI
Bian X.; Heller L.; Kaderavek L.; Sittner P. In-situ synchrotron X-ray diffraction texture analysis of tensile deformation of nanocrystalline NiTi wire in martensite state. Appl. Mater. Today 2022, 26, 10137810.1016/j.apmt.2022.101378. DOI
Frenzel J.; George E. P.; Dlouhy A.; Somsen C.; Wagner M.F.-X.; Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 3444–3458. 10.1016/j.actamat.2010.02.019. DOI
Benafan O.; Noebe R. D.; Padula S. A. II; Garg A.; Clausen B.; Vogel S.; Vaidyanathan R. Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int. J. Plast. 2013, 51, 103–121. 10.1016/j.ijplas.2013.06.003. DOI
Taylor S. L.; Ibeh A. J.; Jakus A. E.; Shah R. N.; Dunand D. C. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering. Acta Biomaterialia 2018, 76, 359–370. 10.1016/j.actbio.2018.06.015. PubMed DOI
Wang Z.; Everaerts J.; Salvati E.; Korsunsky A. M. Evolution of thermal and mechanical properties of Nitinol wire as a function of ageing treatment conditions. J. Alloys Compd. 2020, 819, 15302410.1016/j.jallcom.2019.153024. DOI
Kocich R.; Szurman I.; Kursa M.. The Methods of Preparation of Ti-Ni-X Alloys and Their Forming, Shape Memory Alloys-Processing, Characterization and Applications; InTech: Croatia; pp 27–52.
Wang Z.; Chen J.; Besnard C.; Korsunsky A. M. Microstructure evolution in a severely cold-worked NiTi wire during ageing treatment: An in situ neutron diffraction study. Mater. Lett. 2020, 281, 12867610.1016/j.matlet.2020.128676. DOI
Plancher E.; Petit J.; Maurice C.; Favier V.; Saintoyant L.; Loisnard D.; Rupin N.; Marijon J. B.; Ulrich O.; Bornert M.; Micha J. S.; Robach O.; Castelnau O. On the Accuracy of Elastic Strain Field Measurements by Laue Microdiffraction and High-Resolution EBSD: a Cross-Validation Experiment. Exp. Mech. 2016, 56, 483–492. 10.1007/s11340-015-0114-1. DOI
Korsunsky A. M.; Song X.; Hofmann F.; Abbey B.; Xie M.; Connolley T.; Reinhard C.; Atwood R. C.; Connor L.; Drakopoulos M. Polycrystal deformation analysis by high energy synchrotron X-ray diffraction on the I12 JEEP beamline at Diamond Light Source. Mater. Lett. 2010, 64, 1724–1727. 10.1016/j.matlet.2010.04.023. DOI
Kunčická L.; Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018, 369, 01202910.1088/1757-899X/369/1/012029. DOI
Kocich R.; Kursa M.; Szurman I.; Dlouhy A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni-Ti shape memory alloys. J. Alloys Compd. 2011, 509, 2716–2722. 10.1016/j.jallcom.2010.12.003. DOI
Kocich R.; Kuncicka L.; Kral P.; Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018, 160, 828–835. 10.1016/j.matdes.2018.10.027. DOI
Kocich R.; Kuncicka L.; Dohnalik D.; Machackova A.; Sofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016, 61, 264–272. 10.1016/j.ijrmhm.2016.10.005. DOI
Schaffer M.; Schaffer B.; Ramasse Q. Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 2012, 114, 62–71. 10.1016/j.ultramic.2012.01.005. PubMed DOI
Ulrich O.; Biquard X.; Bleuet P.; et al. A new white beam X-ray microdiffraction setup on the BM32 beamline at the European Synchrotron Radiation Facility. Rev. Sci. Instrum. 2011, 82, 03390810.1063/1.3555068. PubMed DOI
Statnik E. S.; Salimon A. I.; Besnard C.; Chen J.; Wang Z.; Moxham T.; Dolbnya I. P.; Korsunsky A. M. Ovine Bone Morphology and Deformation Analysis Using Synchrotron X-ray Imaging and Scattering. Quantum Beam Science 2020, 4, 29.10.3390/qubs4030029. DOI
Micha J. S.lauetools: A Software Package for Laue Microdiffraction Data Analysis, unpublished.
Wang Z.; Chen J.; Magdysyuk O. V.; Uzun F.; Korsunsky A. M. Ultra-fast quantification of polycrystalline texture via single shot synchrotron X-ray or neutron diffraction. Mater. Charact. 2022, 186, 11182710.1016/j.matchar.2022.111827. DOI
Bachmann F.; Hielscher R.; Schaeben H. Texture analysis with MTEX-Free and open source software toolbox. Solid State Phenom. 2010, 160, 63–68. 10.4028/www.scientific.net/SSP.160.63. DOI
Toby B. H.; Von Dreele R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. 10.1107/S0021889813003531. DOI
Bordín S. F.; Limandri S.; Ranalli J. M.; Castellano G. EBSD spatial resolution for detecting sigma phase in steels. Ultramicroscopy 2016, 171, 177–185. 10.1016/j.ultramic.2016.09.010. PubMed DOI
Berveiller S.; Malard B.; Wright J.; Patoor E.; Geandier G. In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy. Acta Mater. 2011, 59, 3636–3645. 10.1016/j.actamat.2011.02.037. DOI
Polatidis E.; Smid M.; Kubena I.; Hsu W. N.; Laplanche G.; Van Swygenhoven H. Deformation mechanisms in a superelastic NiTi alloy: An in-situ high resolution digital image correlation study. Mater. Des. 2020, 191, 10862210.1016/j.matdes.2020.108622. DOI
Molnárová O.; Tyc O.; Heller L.; Seiner H.; Sittner P. Evolution of martensitic microstructures in nanocrystalline NiTi wires deformed in tension. Acta Mater. 2021, 218, 11716610.1016/j.actamat.2021.117166. DOI
Sedmák P.; Sittner P.; Pilch J.; Curfs C. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater. 2015, 94, 257–270. 10.1016/j.actamat.2015.04.039. DOI
Canelo-Yubero D.; Kocich R.; Hervoches C.; Strunz P.; Kuncicka L.; Kratka L. Neutron Diffraction Study of Residual Stresses in a W-Ni-Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2021, 28, 919–930. 10.1007/s12540-020-00963-8. DOI
Uzun F.; Papadaki C.; Wang Z.; Korsunsky A. M. Neutron strain scanning for experimental validation of the artificial intelligence based eigenstrain contour method. Mech. Mater. 2020, 143, 10331610.1016/j.mechmat.2020.103316. DOI
Uzun F.; Salimon A. I.; Statnik E. S.; Besnard C.; Chen J.; Moxham T.; Salvati E.; Wang Z.; Korsunsky A. M. Polar transformation of 2D X-ray diffraction patterns and the experimental validation of the hDIC technique. Measurement 2020, 151, 10719310.1016/j.measurement.2019.107193. DOI
Romano Brandt L.; Marie J.; Moxham T.; Forstermann D. P.; Salvati E.; Besnard C.; Papadaki C.; Wang Z.; Bruce P. G.; Korsunsky A. M. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle. Energy Environ. Sci. 2020, 13, 3556–3566. 10.1039/D0EE02290J. DOI
Chen J.; Salvati E.; Uzun F.; Papadaki C.; Wang Z.; Everaerts J.; Korsunsky A. M. An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy. J. Manuf. Processes 2020, 53, 190–200. 10.1016/j.jmapro.2020.02.007. DOI
Chen J.; Wang Z.; Korsunsky A. M. Multiscale stress and strain statistics in the deformation of polycrystalline alloys. Int. J. Plast. 2022, 152, 10326010.1016/j.ijplas.2022.103260. DOI
Groeber M. A.; Jackson M. A. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integr. Mater. Manuf. Innovation 2014, 3, 56–72. 10.1186/2193-9772-3-5. DOI
Šittner P.; Heller L.; Pilch J.; Curfs C.; Alonso T.; Favier D. Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires. J. Mater. Eng. Perform. 2014, 23, 2303–2314. 10.1007/s11665-014-0976-x. DOI
Influence of Imposed Strain on Weldability of Dievar Alloy
Structural Phenomena Introduced by Rotary Swaging: A Review
(Sub)structure Development in Gradually Swaged Electroconductive Bars