Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation

. 2022 Jul 13 ; 14 (27) : 31396-31410. [epub] 20220627

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35759353

To explore an effective route of customizing the superelasticity (SE) of NiTi shape memory alloys via modifying the grain structure, binary Ni55Ti45 (wt) alloys were fabricated in as-cast, hot swaged, and hot-rolled conditions, presenting contrasting grain sizes and grain boundary types. In situ synchrotron X-ray Laue microdiffraction and in situ synchrotron X-ray powder diffraction techniques were employed to unravel the underlying grain structure mechanisms that cause the diversity of SE performance among the three materials. The evolution of lattice rotation, strain field, and phase transformation has been revealed at the micro- and mesoscale, and the effect of grain structure on SE performance has been quantified. It was found that (i) the Ni4Ti3 and NiTi2 precipitates are similar among the three materials in terms of morphology, size, and orientation distribution; (ii) phase transformation happens preferentially near high-angle grain boundary (HAGB) yet randomly in low-angle grain boundary (LAGB) structures; (iii) the smaller the grain size, the higher the phase transformation nucleation kinetics, and the lower the propagation kinetics; (iv) stress concentration happens near HAGBs, while no obvious stress concentration can be observed in the LAGB grain structure during loading; (v) the statistical distribution of strain in the three materials becomes asymmetric during loading; (vi) three grain lattice rotation modes are identified and termed for the first time, namely, multi-extension rotation, rigid rotation, and nondispersive rotation; and (vii) the texture evolution of B2 austenite and B19' martensite is not strongly dependent on the grain structure.

Zobrazit více v PubMed

Wang Z.; Chen J.; Besnard C.; Kuncicka L.; Kocich R.; Korsunsky A. M. In-situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021, 202, 135–148. 10.1016/j.actamat.2020.10.049. DOI

Wang Z.; Korsunsky A. M. Effect of Temperature on Shape Memory Materials. Encyclopedia of Smart Materials 2022, 4, 239–253. 10.1016/B978-0-12-803581-8.11793-X. DOI

Ahadi A.; Sun Q. Effects of grain size on the rate-dependent thermomechanical response of nanostructured superelastic NiTi. Acta Mater. 2014, 76, 186–197. 10.1016/j.actamat.2014.05.007. DOI

Bian X.; Heller L.; Kaderavek L.; Sittner P. In-situ synchrotron X-ray diffraction texture analysis of tensile deformation of nanocrystalline NiTi wire in martensite state. Appl. Mater. Today 2022, 26, 10137810.1016/j.apmt.2022.101378. DOI

Frenzel J.; George E. P.; Dlouhy A.; Somsen C.; Wagner M.F.-X.; Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 3444–3458. 10.1016/j.actamat.2010.02.019. DOI

Benafan O.; Noebe R. D.; Padula S. A. II; Garg A.; Clausen B.; Vogel S.; Vaidyanathan R. Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int. J. Plast. 2013, 51, 103–121. 10.1016/j.ijplas.2013.06.003. DOI

Taylor S. L.; Ibeh A. J.; Jakus A. E.; Shah R. N.; Dunand D. C. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering. Acta Biomaterialia 2018, 76, 359–370. 10.1016/j.actbio.2018.06.015. PubMed DOI

Wang Z.; Everaerts J.; Salvati E.; Korsunsky A. M. Evolution of thermal and mechanical properties of Nitinol wire as a function of ageing treatment conditions. J. Alloys Compd. 2020, 819, 15302410.1016/j.jallcom.2019.153024. DOI

Kocich R.; Szurman I.; Kursa M.. The Methods of Preparation of Ti-Ni-X Alloys and Their Forming, Shape Memory Alloys-Processing, Characterization and Applications; InTech: Croatia; pp 27–52.

Wang Z.; Chen J.; Besnard C.; Korsunsky A. M. Microstructure evolution in a severely cold-worked NiTi wire during ageing treatment: An in situ neutron diffraction study. Mater. Lett. 2020, 281, 12867610.1016/j.matlet.2020.128676. DOI

Plancher E.; Petit J.; Maurice C.; Favier V.; Saintoyant L.; Loisnard D.; Rupin N.; Marijon J. B.; Ulrich O.; Bornert M.; Micha J. S.; Robach O.; Castelnau O. On the Accuracy of Elastic Strain Field Measurements by Laue Microdiffraction and High-Resolution EBSD: a Cross-Validation Experiment. Exp. Mech. 2016, 56, 483–492. 10.1007/s11340-015-0114-1. DOI

Korsunsky A. M.; Song X.; Hofmann F.; Abbey B.; Xie M.; Connolley T.; Reinhard C.; Atwood R. C.; Connor L.; Drakopoulos M. Polycrystal deformation analysis by high energy synchrotron X-ray diffraction on the I12 JEEP beamline at Diamond Light Source. Mater. Lett. 2010, 64, 1724–1727. 10.1016/j.matlet.2010.04.023. DOI

Kunčická L.; Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018, 369, 01202910.1088/1757-899X/369/1/012029. DOI

Kocich R.; Kursa M.; Szurman I.; Dlouhy A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni-Ti shape memory alloys. J. Alloys Compd. 2011, 509, 2716–2722. 10.1016/j.jallcom.2010.12.003. DOI

Kocich R.; Kuncicka L.; Kral P.; Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018, 160, 828–835. 10.1016/j.matdes.2018.10.027. DOI

Kocich R.; Kuncicka L.; Dohnalik D.; Machackova A.; Sofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016, 61, 264–272. 10.1016/j.ijrmhm.2016.10.005. DOI

Schaffer M.; Schaffer B.; Ramasse Q. Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 2012, 114, 62–71. 10.1016/j.ultramic.2012.01.005. PubMed DOI

Ulrich O.; Biquard X.; Bleuet P.; et al. A new white beam X-ray microdiffraction setup on the BM32 beamline at the European Synchrotron Radiation Facility. Rev. Sci. Instrum. 2011, 82, 03390810.1063/1.3555068. PubMed DOI

Statnik E. S.; Salimon A. I.; Besnard C.; Chen J.; Wang Z.; Moxham T.; Dolbnya I. P.; Korsunsky A. M. Ovine Bone Morphology and Deformation Analysis Using Synchrotron X-ray Imaging and Scattering. Quantum Beam Science 2020, 4, 29.10.3390/qubs4030029. DOI

Micha J. S.lauetools: A Software Package for Laue Microdiffraction Data Analysis, unpublished.

Wang Z.; Chen J.; Magdysyuk O. V.; Uzun F.; Korsunsky A. M. Ultra-fast quantification of polycrystalline texture via single shot synchrotron X-ray or neutron diffraction. Mater. Charact. 2022, 186, 11182710.1016/j.matchar.2022.111827. DOI

Bachmann F.; Hielscher R.; Schaeben H. Texture analysis with MTEX-Free and open source software toolbox. Solid State Phenom. 2010, 160, 63–68. 10.4028/www.scientific.net/SSP.160.63. DOI

Toby B. H.; Von Dreele R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. 10.1107/S0021889813003531. DOI

Bordín S. F.; Limandri S.; Ranalli J. M.; Castellano G. EBSD spatial resolution for detecting sigma phase in steels. Ultramicroscopy 2016, 171, 177–185. 10.1016/j.ultramic.2016.09.010. PubMed DOI

Berveiller S.; Malard B.; Wright J.; Patoor E.; Geandier G. In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy. Acta Mater. 2011, 59, 3636–3645. 10.1016/j.actamat.2011.02.037. DOI

Polatidis E.; Smid M.; Kubena I.; Hsu W. N.; Laplanche G.; Van Swygenhoven H. Deformation mechanisms in a superelastic NiTi alloy: An in-situ high resolution digital image correlation study. Mater. Des. 2020, 191, 10862210.1016/j.matdes.2020.108622. DOI

Molnárová O.; Tyc O.; Heller L.; Seiner H.; Sittner P. Evolution of martensitic microstructures in nanocrystalline NiTi wires deformed in tension. Acta Mater. 2021, 218, 11716610.1016/j.actamat.2021.117166. DOI

Sedmák P.; Sittner P.; Pilch J.; Curfs C. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater. 2015, 94, 257–270. 10.1016/j.actamat.2015.04.039. DOI

Canelo-Yubero D.; Kocich R.; Hervoches C.; Strunz P.; Kuncicka L.; Kratka L. Neutron Diffraction Study of Residual Stresses in a W-Ni-Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2021, 28, 919–930. 10.1007/s12540-020-00963-8. DOI

Uzun F.; Papadaki C.; Wang Z.; Korsunsky A. M. Neutron strain scanning for experimental validation of the artificial intelligence based eigenstrain contour method. Mech. Mater. 2020, 143, 10331610.1016/j.mechmat.2020.103316. DOI

Uzun F.; Salimon A. I.; Statnik E. S.; Besnard C.; Chen J.; Moxham T.; Salvati E.; Wang Z.; Korsunsky A. M. Polar transformation of 2D X-ray diffraction patterns and the experimental validation of the hDIC technique. Measurement 2020, 151, 10719310.1016/j.measurement.2019.107193. DOI

Romano Brandt L.; Marie J.; Moxham T.; Forstermann D. P.; Salvati E.; Besnard C.; Papadaki C.; Wang Z.; Bruce P. G.; Korsunsky A. M. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle. Energy Environ. Sci. 2020, 13, 3556–3566. 10.1039/D0EE02290J. DOI

Chen J.; Salvati E.; Uzun F.; Papadaki C.; Wang Z.; Everaerts J.; Korsunsky A. M. An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy. J. Manuf. Processes 2020, 53, 190–200. 10.1016/j.jmapro.2020.02.007. DOI

Chen J.; Wang Z.; Korsunsky A. M. Multiscale stress and strain statistics in the deformation of polycrystalline alloys. Int. J. Plast. 2022, 152, 10326010.1016/j.ijplas.2022.103260. DOI

Groeber M. A.; Jackson M. A. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integr. Mater. Manuf. Innovation 2014, 3, 56–72. 10.1186/2193-9772-3-5. DOI

Šittner P.; Heller L.; Pilch J.; Curfs C.; Alonso T.; Favier D. Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires. J. Mater. Eng. Perform. 2014, 23, 2303–2314. 10.1007/s11665-014-0976-x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...