(Sub)structure Development in Gradually Swaged Electroconductive Bars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023051
MEYS CR
SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760
MEYS CR
22-11949S
Czech Science Foundation
PubMed
37570027
PubMed Central
PMC10420053
DOI
10.3390/ma16155324
PII: ma16155324
Knihovny.cz E-zdroje
- Klíčová slova
- EBSD, copper, electrical conductivity, microstructure, rotary swaging, texture,
- Publikační typ
- časopisecké články MeSH
Copper generally exhibits high electrical conductivity but has poor mechanical properties. Although alloying can improve the latter characteristic, it usually leads to a decrease in electrical conductivity. To address this issue, a promising approach is to enhance the performance of copper while maintaining high electrical conductivity through optimized deformation processing, which refines the structure and increases mechanical properties. This paper focuses on assessing the effects of rotary swaging, a form of deformation processing, on microstructures and substructures of electroconductive copper bars. This analysis is complemented by experimental measurements of electrical conductivity. The results demonstrate that gradual swaging, i.e., applying different swaging ratios, influences the structure-forming processes and consequently affects the electrical conductivity. The increased electrical conductivity was found to be associated with the elongation of the grains in the direction of the electron movement.
Zobrazit více v PubMed
Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC
Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Baron A.A., Bevza V.F., Grusha V.P., Gurulev D.N., Palatkina L.V. Structure and Properties of the Hollow Cast Iron Castings Formed by Continuous Cyclic Freeze Casting. Russ. Metall. 2021;2021:297–301. doi: 10.1134/S0036029521030046. DOI
Wu M., Yang J., Huang F., Hua L., Xiong S. Bonding of Cast Iron-Aluminum in Bimetallic Castings by High-Pressure Die Casting Process. Int. J. Adv. Manuf. Technol. 2022;120:537–549. doi: 10.1007/s00170-022-08816-x. DOI
Chlupová A., Šulák I., Kunčická L., Kocich R., Svoboda J. Microstructural Aspects of New Grade ODS Alloy Consolidated by Rotary Swaging. Mater. Charact. 2021;181:111477. doi: 10.1016/j.matchar.2021.111477. DOI
Michalcová A., Özkan M., Mikula P., Marek I., Knaislová A., Kopeček J., Vojtěch D. The Influence of Powder Milling on Properties of SPS Compacted FeAl. Molecules. 2020;25:2263. doi: 10.3390/molecules25092263. PubMed DOI PMC
Johnson J.L. Enhanced Sintering of Tungsten. Int. J. Refract. Met. Hard Mater. 2023;110:106017. doi: 10.1016/j.ijrmhm.2022.106017. DOI
de Oro Calderon R., Gierl-Mayer C., Danninger H. Thermoanalytical Techniques for Characterizing Sintering Processes in Ferrous Powder Metallurgy. J. Therm. Anal. Calorim. 2023;148:1309–1320. doi: 10.1007/s10973-022-11740-7. DOI
Lee J.-H., Kim B.-N., Jang B.-K. Non-Uniform Sintering Behavior during Spark Plasma Sintering of Y2O3. Ceram. Int. 2020;46:4030–4034. doi: 10.1016/j.ceramint.2019.10.070. DOI
Gaffin N.D., Ang C., Milner J.L., Palomares K.B., Zinkle S.J. Consolidation Behavior of Mo30W Alloy Using Spark Plasma Sintering. Int. J. Refract. Met. Hard Mater. 2022;104:105778. doi: 10.1016/j.ijrmhm.2022.105778. DOI
Nkhasi N., du Preez W., Bissett H. Plasma Spheroidisation of Irregular Ti6Al4V Powder for Powder Bed Fusion. Metals. 2021;11:1763. doi: 10.3390/met11111763. DOI
Speidel A., Gargalis L., Ye J., Matthews M.J., Spierings A., Hague R., Clare A.T., Murray J.W. Chemical Recovery of Spent Copper Powder in Laser Powder Bed Fusion. Addit. Manuf. 2022;52:102711. doi: 10.1016/j.addma.2022.102711. DOI
Hedicke-Claus Y., Kriwall M., Stonis M., Behrens B.-A. Automated Design of Multi-Stage Forging Sequences for Die Forging. Prod. Eng. 2023 doi: 10.1007/s11740-023-01190-x. DOI
Dindorf R., Wos P. Energy-Saving Hot Open Die Forging Process of Heavy Steel Forgings on an Industrial Hydraulic Forging Press. Energies. 2020;13:1620. doi: 10.3390/en13071620. DOI
Wei D., Min X., Hu X., Xie Z., Fang F. Microstructure and Mechanical Properties of Cold Drawn Pearlitic Steel Wires: Effects of Drawing-Induced Heating. Mater. Sci. Eng. A. 2020;784:139341. doi: 10.1016/j.msea.2020.139341. DOI
El Amine K., Larsson J., Pejryd L. Experimental Comparison of Roller Die and Conventional Wire Drawing. J. Mater. Process. Technol. 2018;257:7–14. doi: 10.1016/j.jmatprotec.2018.02.012. DOI
Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP. Kov. Mater. Mater. 2007;45:115–120.
Gimaletdinov R.H., Gulakov A.A., Tukhvatulin I.H., Petrov A.V., Filippov V.S. Development of Sheet Rolling Roll Production from Advanced Materials in the Kushva Rolling Roll Plant. Metallurgist. 2021;65:160–168. doi: 10.1007/s11015-021-01144-7. DOI
Čapek J., Kadeřávek L., Pinc J., Kopeček J., Klimša L. Influence of the Microstructure of the Initial Material on the Zn Wires Prepared by Direct Extrusion with a Huge Extrusion Ratio. Metals. 2021;11:787. doi: 10.3390/met11050787. DOI
Reza-E-Rabby M., Wang T., Canfield N., Roosendaal T., Taysom B.S., Graff D., Herling D., Whalen S. Effect of Various Post-Extrusion Tempering on Performance of AA2024 Tubes Fabricated by Shear Assisted Processing and Extrusion. CIRP J. Manuf. Sci. Technol. 2022;37:454–463. doi: 10.1016/j.cirpj.2022.02.025. DOI
Kopeček J., Staněk J., Habr S., Seitl F., Petrich L., Schmidt V., Beneš V. Analysis of Polycrystalline Microstructure of AlMgSc Alloy Observed by 3D EBSD. Image Anal. Stereol. 2020;39 doi: 10.5566/ias.2224. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of Strain Path on Severely Deformed Aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of Fresh and Fully Recrystallized Microstructures through Friction Stir Processing of a Rare Earth Bearing Magnesium Alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Wu Y., Dong X. Upper Bound Analysis of Forging Penetration in a Radial Forging Process. Int. J. Mech. Sci. 2015;103:1–8. doi: 10.1016/j.ijmecsci.2015.08.023. DOI
Yang X., Dong X., Wu Y. An Upper Bound Solution of Forging Load in Cold Radial Forging Process of Rectangular Cross-Section Billet. Int. J. Adv. Manuf. Technol. 2017;92:2765–2776. doi: 10.1007/s00170-017-0303-4. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and Residual Stress within Rotary Swaged Cu/Al Clad Composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. PubMed DOI
Mohan Agarwal K., Tyagi R.K., Chaubey V.K., Dixit A. Comparison of Different Methods of Severe Plastic Deformation for Grain Refinement. IOP Conf. Ser. Mater. Sci. Eng. 2019;691:012074. doi: 10.1088/1757-899X/691/1/012074. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of Thermomechanical Processing via Rotary Swaging on Properties and Residual Stress within Tungsten Heavy Alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Hansen N., Huang X., Hughes D.A. Microstructural Evolution and Hardening Parameters. Mater. Sci. Eng. A. 2001;317:3–11. doi: 10.1016/S0921-5093(01)01191-1. DOI
Herrmann M., Schenck C., Leopold H., Kuhfuss B. Material Improvement of Mild Steel S355J2C by Hot Rotary Swaging. Procedia Manuf. 2020;47:282–287. doi: 10.1016/j.promfg.2020.04.224. DOI
Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC
Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2021;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI
Liu R., Xie Z.M., Yao X., Zhang T., Wang X.P., Hao T., Fang Q.F., Liu C.S. Effects of Swaging and Annealing on the Microstructure and Mechanical Properties of ZrC Dispersion-Strengthened Tungsten. Int. J. Refract. Met. Hard Mater. 2018;76:33–40. doi: 10.1016/j.ijrmhm.2018.05.018. DOI
Bochvar N.R., Rybalchenko O.V., Leonova N.P., Tabachkova N.Y., Rybalchenko G.V., Rokhlin L.L. Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions. J. Alloys Compd. 2020;821:153426. doi: 10.1016/j.jallcom.2019.153426. DOI
Görtan M.O., Groche P. Tool Design Guidelines for the Equal Channel Angular Swaging (ECAS) Process. J. Mater. Process. Technol. 2014;214:2220–2232. doi: 10.1016/j.jmatprotec.2014.04.023. DOI
Kunčická L., Macháčková A., Krátká L., Kocich R. Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Materials. 2019;12:3462. doi: 10.3390/ma12213462. PubMed DOI PMC
Kunčická L., Kocich R. Comprehensive Characterisation of a Newly Developed Mg-Dy-Al-Zn-Zr Alloy Structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Chen X., Liu C., Jiang S., Chen Z., Wan Y. Fabrication of Nanocrystalline High-Strength Magnesium−Lithium Alloy by Rotary Swaging. Adv. Eng. Mater. 2022;24:2100666. doi: 10.1002/adem.202100666. DOI
Lourenço C.J., Souza L., Silva G., Suzuki P.A., Robin A.L.M., Nunes C.A., Tomachuk C.R. Effects of Solidification, Rotary Swaging and Recrystallization on the Microstructure, Crystallographic Orientation and Electrochemical Behavior of an Al-4.5 Wt.% Cu Alloy. Int. J. Electrochem. Sci. 2021;16:211054. doi: 10.20964/2021.10.43. DOI
Jin H., Guan R., Tie D. Mechanical and Conductive Performance of Aged 6xxx Aluminum Alloy during Rotary Swaging. Crystals. 2022;12:530. doi: 10.3390/cryst12040530. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Giribaskar S., Gouthama, Prasad R. Ultra-Fine Grained Al-SiC Metal Matrix Composite by Rotary Swaging Process. Mater. Sci. Forum. 2011;702–703:320–323. doi: 10.4028/www.scientific.net/MSF.702-703.320. DOI
Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient Microstructure and Texture Formation in a Metastable Austenitic Stainless Steel during Cold Rotary Swaging. Materials. 2023;16:1706. doi: 10.3390/ma16041706. PubMed DOI PMC
Mao Q., Chen X., Li J., Zhao Y. Nano-Gradient Materials Prepared by Rotary Swaging. Nanomaterials. 2021;11:2223. doi: 10.3390/nano11092223. PubMed DOI PMC
Kunčická L., Kocich R., Benč M., Dvořák J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials. 2022;15:6291. doi: 10.3390/ma15186291. PubMed DOI PMC
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.
Bahador A., Umeda J., Hamzah E., Yusof F., Li X., Kondoh K. Synergistic Strengthening Mechanisms of Copper Matrix Composites with TiO2 Nanoparticles. Mater. Sci. Eng. A. 2020;772:138797. doi: 10.1016/j.msea.2019.138797. DOI
Zhao Y., Peng X., Fu T., Zhu X., Hu N., Yan C. Strengthening Mechanisms of Graphene Coated Copper under Nanoindentation. Comput. Mater. Sci. 2018;144:42–49. doi: 10.1016/j.commatsci.2017.12.009. DOI
Zhou M., Geng Y., Zhang Y., Ban Y., Li X., Jia Y., Liang S., Tian B., Liu Y., Volinsky A.A. Enhanced Mechanical Properties and High Electrical Conductivity of Copper Alloy via Dual-Nanoprecipitation. Mater. Charact. 2023;195:112494. doi: 10.1016/j.matchar.2022.112494. DOI
Wu J., Li Z., Luo Y., Gao Z., Li Y., Zhao Y., Liao Y., Wu C., Jin M. Influence of Synergistic Strengthening Effect of B4C and TiC on Tribological Behavior of Copper-Based Powder Metallurgy. Ceram. Int. 2023;49:2978–2990. doi: 10.1016/j.ceramint.2022.09.282. DOI
Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI
Zhang Q., Jin K., Mu D., Zhang Y., Li Y. Energy-Controlled Rotary Swaging Process for Tube Workpiece. Int. J. Adv. Manuf. Technol. 2015;80:2015–2026. doi: 10.1007/s00170-015-7054-x. DOI
Humphreys F.J., Hetherly M., Rollett A., Rohrer G.S. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.
Otto F., Frenzel J., Eggeler G. On the Evolution of Microstructure in Oxygen-Free High Conductivity Copper during Thermo-Mechanical Processing Using Rotary Swaging. Int. J. Mater. Res. 2011;102:363–370. doi: 10.3139/146.110501. DOI
Tian W., Zhang F., Han S., Chen X., Gao P., Zheng K. Analysis of Microstructure and Properties in Cold Rotary Swaged Copper-Clad Magnesium Wires. Metals. 2023;13:467. doi: 10.3390/met13030467. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Mao Q., Zhang Y., Guo Y., Zhao Y. Enhanced Electrical Conductivity and Mechanical Properties in Thermally Stable Fine-Grained Copper Wire. Commun. Mater. 2021;2:46. doi: 10.1038/s43246-021-00150-1. DOI
Structural Phenomena Introduced by Rotary Swaging: A Review