Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging

. 2022 Sep 09 ; 15 (18) : . [epub] 20220909

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36143603

Grantová podpora
22-11949S Czech Science Foundation

The presented work focused on the development of the microstructural and mechanical properties of a AISI 316L stainless steel workpiece prepared through additive manufacturing and subsequently processed by hot rotary swaging. In order to characterize the effects of swaging on the structural development, samples were taken for electron microscopy scanning and microhardness measurements were taken after each swaging reduction. The as-built and final swaged pieces were also subjected to tensile testing at room temperature and at 900 °C. The structural analyses showed that the hot swaging introduced a substructural formation; low angle grain boundaries prevailed over high angle ones after each pass. The swaging also imparted an almost complete elimination of the porosity and significant grain size; the average grain area decreased from the original value of 365.5 µm2 to 4.4 µm2 after the final swaging pass. The changes in the texture between the passes were negligible, however, the grain refinement went hand in hand with the microhardness increase (up to almost 300 HV1). The results of the tensile testing confirmed that the mechanical properties of the swaged pieces which improved dramatically and remained favorable up to high temperatures.

Zobrazit více v PubMed

Zhu Z., Li W., Nguyen Q.B., An X., Lu W., Li Z., Ng F.L., Nai S.M.L., Wei J. Enhanced strength–ductility synergy and transformation-induced plasticity of the selective laser melting fabricated 304L stainless steel. Addit. Manuf. 2020;35:101300. doi: 10.1016/j.addma.2020.101300. DOI

Ghayoor M., Lee K., He Y., Chang C.-H., Paul B.K., Pasebani S. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Addit. Manuf. 2020;35:101011. doi: 10.1016/j.addma.2019.101011. DOI

Saxena P., Gajera H., Shah D., Pancholi N. Effect of SLM process parameters on hardness and microstructure of stainless steel 316 material. Mater. Today Proc. 2022;50:1653–1659. doi: 10.1016/j.matpr.2021.09.144. DOI

Lanzutti A., Marin E., Tamura K., Morita T., Mangan M., Vaglio E., Andreatta F., Sortino M., Totis G., Fedrizzi L. High temperature study of the evolution of the tribolayer in additively manufactured AISI 316L steel. Addit. Manuf. 2020;34:101258. doi: 10.1016/j.addma.2020.101258. DOI

Takata N., Liu M., Kodaira H., Suzuki A., Kobashi M. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al–Si-based alloys. Addit. Manuf. 2020;33:101152. doi: 10.1016/j.addma.2020.101152. DOI

Liu Y., Meng J., Zhu L., Chen H., Li Z., Li S., Wang D., Wang Y., Kosiba K. Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions. Addit. Manuf. 2022;54:102772. doi: 10.1016/j.addma.2022.102772. DOI

Liu S., Geethapriyan T., Muthuramalingam T., Shanmugam R., Ramoni M. Influence of heat-treated Cu–Be electrode on machining accuracy in ECMM with Monel 400 alloy. Arch. Civ. Mech. Eng. 2022;22:154. doi: 10.1007/s43452-022-00478-6. DOI

Shanmugam R., Ramoni M., Thangamani G., Thangaraj M. Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy. Met. Basel. 2021;11:778. doi: 10.3390/met11050778. DOI

Han Y., Zhang Y., Jing H., Lin D., Zhao L., Xu L., Xin P. Selective laser melting of low-content graphene nanoplatelets reinforced 316L austenitic stainless-steel matrix: Strength enhancement without affecting ductility. Addit. Manuf. 2020;34:101381. doi: 10.1016/j.addma.2020.101381. DOI

Kim S.H., Lee H., Yeon S.M., Aranas Jr C., Choi K., Yoon J., Yang S.W., Lee H. Selective compositional range exclusion via directed energy deposition to produce a defect-free Inconel 718/SS 316L functionally graded material. Addit. Manuf. 2021;47:102288. doi: 10.1016/j.addma.2021.102288. DOI

Dryepondt S., Nandwana P., Zelaia P.F., List F. Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion. Addit. Manuf. 2021;37:101723. doi: 10.1016/j.addma.2020.101723. DOI

Waqar S., Guo K., Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Opt. Laser Technol. 2022;149:107806. doi: 10.1016/j.optlastec.2021.107806. DOI

Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting. JOM. 2017;69:516–522. doi: 10.1007/s11837-016-2230-5. DOI

Sercombe T., Jones N., Day R., Kop A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyp. J. 2008;14:300–304. doi: 10.1108/13552540810907974. DOI

Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014;1–4:77–86. doi: 10.1016/j.addma.2014.08.001. DOI

Moeini G., Sajadifar S.V., Wegener T., Brenne F., Niendorf T., Böhm S. On the low-cycle fatigue behavior of friction stir welded Al–Si12 parts produced by selective laser melting. Mater. Sci. Eng. A. 2019;764:138189. doi: 10.1016/j.msea.2019.138189. DOI

Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. 2020;775:138837. doi: 10.1016/j.msea.2019.138837. DOI

Kocich R., Kunčická L., Král P., Lowe T.C. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion. Mater. Des. 2016;90:1092–1099. doi: 10.1016/j.matdes.2015.11.062. DOI

Yusuf S.M., Hoegden M., Gao N. Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion. Int. J. Adv. Manuf. Technol. 2020;106:4321–4337. doi: 10.1007/s00170-019-04817-5. DOI

Kunčická L., Kocich R., Drápala J., Andreyachenko V.A. METAL 2013, Proceedings of the 22nd International Conference on Metallurgy and Materials, Brno, Czech Republic, 15–17 May 2013. TANGER Ltd.; Greensboro, NC, USA: 2013. FEM simulations comparison of the ECAP and ECAP-PBP influence on Ti6Al4V alloy’s deformation behavior; pp. 391–396.

Sun C., Liu H., Wan C., Ju J., Wan G., Jia J., Ma A., Bai J., Xue F., Xin Y. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance. J. Alloys Compd. 2022;911:165046. doi: 10.1016/j.jallcom.2022.165046. DOI

Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Kunčická L., Kocich R., Ryukhtin V., Culllen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI

Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI

Pruncu C.I., Hopper C., Hooper P.A., Tan Z., Zhu H., Lin J., Jiang J. Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms. J. Manuf. Process. 2020;57:668–676. doi: 10.1016/j.jmapro.2020.07.028. DOI

Bambach M., Sizova I., Emdadi A. Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. J. Manuf. Process. 2019;37:150–158. doi: 10.1016/j.jmapro.2018.11.011. DOI

Bambach M., Sizova I., Szyndler J., Bennnett J., Hyatt G., Cao J., Papke T., Merklein M. On the hot deformation behavior of Ti-6Al-4V made by additive manufacturing. J. Mater. Process. Technol. 2021;288:116840. doi: 10.1016/j.jmatprotec.2020.116840. DOI

Gamin Y.V., Bolaños J.A.M., Aleschenko A.S., Komissarov A.A., Bunits N.S., Nikolaev D.A., Fomin A.V., Cheverikin V.V. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu–Ni–Cr–Si alloy. Mater. Sci. Eng. A. 2021;822:141676. doi: 10.1016/j.msea.2021.141676. DOI

Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI

Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI

Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: Microstructure, texture and functional properties. J. Alloys Compd. 2019;800:320–326. doi: 10.1016/j.jallcom.2019.06.041. DOI

Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI

García C., Martín F., Tiedra P., Cambronero L.G. Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen–hydrogen atmosphere. Corros. Sci. 2007;49:1718–1736. doi: 10.1016/j.corsci.2006.10.009. DOI

Saeidi K., Gao X., Zhong Y., Shen Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. 2015;625:221–229. doi: 10.1016/j.msea.2014.12.018. DOI

Sefene E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022;63:250–274. doi: 10.1016/j.jmsy.2022.04.002. DOI

Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007. p. 560.

Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004. p. 628.

Russel A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2005. p. 520.

Montero-Sistiaga M.L., Godino-Martinez M., Boschmans K., Kruth J.-P., Van Humbeeck J., Vanmeensel K. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting) Addit. Manuf. 2018;23:402–410. doi: 10.1016/j.addma.2018.08.028. DOI

Byun T.S., Garrison B.E., McAlister M.R., Chen X., Gussev M.N., Lach T.G., Le Coq A., Linton K., Joslin C.B., Carver J.K., et al. Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation. J. Nucl. Mater. 2021;548:152849. doi: 10.1016/j.jnucmat.2021.152849. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...