Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-11949S
Czech Science Foundation
PubMed
36143603
PubMed Central
PMC9504815
DOI
10.3390/ma15186291
PII: ma15186291
Knihovny.cz E-zdroje
- Klíčová slova
- 316L stainless steel, mechanical properties, microstructure, rotary swaging, selective laser melting,
- Publikační typ
- časopisecké články MeSH
The presented work focused on the development of the microstructural and mechanical properties of a AISI 316L stainless steel workpiece prepared through additive manufacturing and subsequently processed by hot rotary swaging. In order to characterize the effects of swaging on the structural development, samples were taken for electron microscopy scanning and microhardness measurements were taken after each swaging reduction. The as-built and final swaged pieces were also subjected to tensile testing at room temperature and at 900 °C. The structural analyses showed that the hot swaging introduced a substructural formation; low angle grain boundaries prevailed over high angle ones after each pass. The swaging also imparted an almost complete elimination of the porosity and significant grain size; the average grain area decreased from the original value of 365.5 µm2 to 4.4 µm2 after the final swaging pass. The changes in the texture between the passes were negligible, however, the grain refinement went hand in hand with the microhardness increase (up to almost 300 HV1). The results of the tensile testing confirmed that the mechanical properties of the swaged pieces which improved dramatically and remained favorable up to high temperatures.
Zobrazit více v PubMed
Zhu Z., Li W., Nguyen Q.B., An X., Lu W., Li Z., Ng F.L., Nai S.M.L., Wei J. Enhanced strength–ductility synergy and transformation-induced plasticity of the selective laser melting fabricated 304L stainless steel. Addit. Manuf. 2020;35:101300. doi: 10.1016/j.addma.2020.101300. DOI
Ghayoor M., Lee K., He Y., Chang C.-H., Paul B.K., Pasebani S. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Addit. Manuf. 2020;35:101011. doi: 10.1016/j.addma.2019.101011. DOI
Saxena P., Gajera H., Shah D., Pancholi N. Effect of SLM process parameters on hardness and microstructure of stainless steel 316 material. Mater. Today Proc. 2022;50:1653–1659. doi: 10.1016/j.matpr.2021.09.144. DOI
Lanzutti A., Marin E., Tamura K., Morita T., Mangan M., Vaglio E., Andreatta F., Sortino M., Totis G., Fedrizzi L. High temperature study of the evolution of the tribolayer in additively manufactured AISI 316L steel. Addit. Manuf. 2020;34:101258. doi: 10.1016/j.addma.2020.101258. DOI
Takata N., Liu M., Kodaira H., Suzuki A., Kobashi M. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al–Si-based alloys. Addit. Manuf. 2020;33:101152. doi: 10.1016/j.addma.2020.101152. DOI
Liu Y., Meng J., Zhu L., Chen H., Li Z., Li S., Wang D., Wang Y., Kosiba K. Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions. Addit. Manuf. 2022;54:102772. doi: 10.1016/j.addma.2022.102772. DOI
Liu S., Geethapriyan T., Muthuramalingam T., Shanmugam R., Ramoni M. Influence of heat-treated Cu–Be electrode on machining accuracy in ECMM with Monel 400 alloy. Arch. Civ. Mech. Eng. 2022;22:154. doi: 10.1007/s43452-022-00478-6. DOI
Shanmugam R., Ramoni M., Thangamani G., Thangaraj M. Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy. Met. Basel. 2021;11:778. doi: 10.3390/met11050778. DOI
Han Y., Zhang Y., Jing H., Lin D., Zhao L., Xu L., Xin P. Selective laser melting of low-content graphene nanoplatelets reinforced 316L austenitic stainless-steel matrix: Strength enhancement without affecting ductility. Addit. Manuf. 2020;34:101381. doi: 10.1016/j.addma.2020.101381. DOI
Kim S.H., Lee H., Yeon S.M., Aranas Jr C., Choi K., Yoon J., Yang S.W., Lee H. Selective compositional range exclusion via directed energy deposition to produce a defect-free Inconel 718/SS 316L functionally graded material. Addit. Manuf. 2021;47:102288. doi: 10.1016/j.addma.2021.102288. DOI
Dryepondt S., Nandwana P., Zelaia P.F., List F. Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion. Addit. Manuf. 2021;37:101723. doi: 10.1016/j.addma.2020.101723. DOI
Waqar S., Guo K., Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Opt. Laser Technol. 2022;149:107806. doi: 10.1016/j.optlastec.2021.107806. DOI
Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting. JOM. 2017;69:516–522. doi: 10.1007/s11837-016-2230-5. DOI
Sercombe T., Jones N., Day R., Kop A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyp. J. 2008;14:300–304. doi: 10.1108/13552540810907974. DOI
Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014;1–4:77–86. doi: 10.1016/j.addma.2014.08.001. DOI
Moeini G., Sajadifar S.V., Wegener T., Brenne F., Niendorf T., Böhm S. On the low-cycle fatigue behavior of friction stir welded Al–Si12 parts produced by selective laser melting. Mater. Sci. Eng. A. 2019;764:138189. doi: 10.1016/j.msea.2019.138189. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. 2020;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Kocich R., Kunčická L., Král P., Lowe T.C. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion. Mater. Des. 2016;90:1092–1099. doi: 10.1016/j.matdes.2015.11.062. DOI
Yusuf S.M., Hoegden M., Gao N. Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion. Int. J. Adv. Manuf. Technol. 2020;106:4321–4337. doi: 10.1007/s00170-019-04817-5. DOI
Kunčická L., Kocich R., Drápala J., Andreyachenko V.A. METAL 2013, Proceedings of the 22nd International Conference on Metallurgy and Materials, Brno, Czech Republic, 15–17 May 2013. TANGER Ltd.; Greensboro, NC, USA: 2013. FEM simulations comparison of the ECAP and ECAP-PBP influence on Ti6Al4V alloy’s deformation behavior; pp. 391–396.
Sun C., Liu H., Wan C., Ju J., Wan G., Jia J., Ma A., Bai J., Xue F., Xin Y. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance. J. Alloys Compd. 2022;911:165046. doi: 10.1016/j.jallcom.2022.165046. DOI
Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Kunčická L., Kocich R., Ryukhtin V., Culllen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI
Pruncu C.I., Hopper C., Hooper P.A., Tan Z., Zhu H., Lin J., Jiang J. Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms. J. Manuf. Process. 2020;57:668–676. doi: 10.1016/j.jmapro.2020.07.028. DOI
Bambach M., Sizova I., Emdadi A. Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. J. Manuf. Process. 2019;37:150–158. doi: 10.1016/j.jmapro.2018.11.011. DOI
Bambach M., Sizova I., Szyndler J., Bennnett J., Hyatt G., Cao J., Papke T., Merklein M. On the hot deformation behavior of Ti-6Al-4V made by additive manufacturing. J. Mater. Process. Technol. 2021;288:116840. doi: 10.1016/j.jmatprotec.2020.116840. DOI
Gamin Y.V., Bolaños J.A.M., Aleschenko A.S., Komissarov A.A., Bunits N.S., Nikolaev D.A., Fomin A.V., Cheverikin V.V. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu–Ni–Cr–Si alloy. Mater. Sci. Eng. A. 2021;822:141676. doi: 10.1016/j.msea.2021.141676. DOI
Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI
Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: Microstructure, texture and functional properties. J. Alloys Compd. 2019;800:320–326. doi: 10.1016/j.jallcom.2019.06.041. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
García C., Martín F., Tiedra P., Cambronero L.G. Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen–hydrogen atmosphere. Corros. Sci. 2007;49:1718–1736. doi: 10.1016/j.corsci.2006.10.009. DOI
Saeidi K., Gao X., Zhong Y., Shen Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. 2015;625:221–229. doi: 10.1016/j.msea.2014.12.018. DOI
Sefene E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022;63:250–274. doi: 10.1016/j.jmsy.2022.04.002. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007. p. 560.
Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004. p. 628.
Russel A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2005. p. 520.
Montero-Sistiaga M.L., Godino-Martinez M., Boschmans K., Kruth J.-P., Van Humbeeck J., Vanmeensel K. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting) Addit. Manuf. 2018;23:402–410. doi: 10.1016/j.addma.2018.08.028. DOI
Byun T.S., Garrison B.E., McAlister M.R., Chen X., Gussev M.N., Lach T.G., Le Coq A., Linton K., Joslin C.B., Carver J.K., et al. Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation. J. Nucl. Mater. 2021;548:152849. doi: 10.1016/j.jnucmat.2021.152849. DOI
(Sub)structure Development in Gradually Swaged Electroconductive Bars