Dilatation of New Progressive Hybrid Sand and Its Effect on Surface Structure, Roughness, and Veining Creation within Grey Cast Iron

. 2023 Feb 28 ; 16 (5) : . [epub] 20230228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36903119

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008399 Ministry of Education Youth and Sports
SP2023/022 Ministry of Education Youth and Sports

The constant effort of all metal alloy manufacturing technologies and processes is to improve the resulting quality of the processed part. Not only the metallographic structure of the material is monitored, but also the final quality of the cast surface. In foundry technologies, in addition to the quality of the liquid metal, external influences, such as the behaviour of the mould or core material, significantly affect the cast surface quality. As the core is heated during casting, the resulting dilatations often lead to significant volume changes causing stress foundry defects such as veining, penetration and surface roughness. In the experiment, various amounts of silica sand were replaced with artificial sand and a significant reduction in dilation and pitting of up to 52.9% was observed. An important finding was the effect of the granulometric composition and grain size of the sand on the formation of surface defects from brake thermal stresses. The specific mixture composition can be considered as an effective prevention against the formation of defects instead of using a protective coating.

Zobrazit více v PubMed

Chlupová A., Šulák I., Kunčická L., Kocich R., Svoboda J. Microstructural aspects of new grade ODS alloy consolidated by rotary swaging. Mater. Charact. 2021;181:111477. doi: 10.1016/j.matchar.2021.111477. DOI

Kunčická L., Kocich R., Benč M., Dvořák J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials. 2022;15:6291. doi: 10.3390/ma15186291. PubMed DOI PMC

Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2021;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC

Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of post process shear straining on structure and mechanical properties of 316 L stainless steel manufactured via powder bed fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI

Janjušević Z., Gulišija Z., Radosavljević S., Aćimović Z. A contribution to study of processes on the steel cast–sand mould contact surface during casting. Mater. Lett. 2000;45:235–240. doi: 10.1016/S0167-577X(00)00111-7. DOI

Stefanescu D.M., Owens M., Lane A.M., Piwonka T.S. Penetration of liquid steel in sand molds, part I: Physics and chemistry of penetration and mathematical modeling-metal side. Trans. -Am. Foundrymens Soc. 2001;2001:1347–1364.

Lane A.M., Owens M.D., Stefanescu D.M., Barlow J.O., Hayes K., Piwonka T.S. Penetration of liquid steel in sand molds, part II: Chemical reactions at the mold/metal interface during casting of steel. Trans. -Am. Foundrymens Soc. 2001;2001:1327–1346.

Seidl H., Dahlman M., Ivanov S., Křistek J. Synthetic foundry sands bring new possibilities (in Czech) Slévárenství. 2002;5:181–184.

Thiel J., Ravi S. Causes and Solutions to Veining Defects in Iron and Steel Castings. AFS Trans. 2014;14:1–16.

Lannutti J.J., Mobley C.E. Improvements in Sand Mold/Core Technology: Effects on Casting Finish. The Ohio State University (US); Columbus, OH, USA: 2005. Technical Report.

Nasu S., Fujita S., Furusato N., Yamada S., Hiratsuka S. Effect of casting skin condition on fatigue strength of gray cast iron. Int. J. Met. 2017;11:155–161. doi: 10.1007/s40962-016-0109-4. DOI

Kowalski J.S. Thermal Aspects of Temperature Transformations in Silica Sand. Arch. Foundry Eng. 2010;10:111–114.

Beňo J., Adamusová K., Merta V., Bajer T. Influence of silica sand on surface casting quality. Arch. Foundry Eng. 2019;19:5–8. doi: 10.24425/afe.2019.127107. DOI

Hrubovčáková M., Vasková I., Benková M., Conev M. Opening Material as the Possibility of Elimination Veining in Foundries. Arch. Foundry Eng. 2016;16:157–161. doi: 10.1515/afe-2016-0070. DOI

Chao C.H., Lu H.Y. Stress-Induced β→α-Cristobalite Phase Transformation in (Na2O+ Al2O3)-codoped Silica. Mater. Sci. Eng. A. 2002;328:267–276. doi: 10.1016/S0921-5093(01)01703-8. DOI

Jelínek P., Mikšovský F. The mechanism of the products; Proceedings of the International Conference: Casting defects caused by Mold Materials; Mílovy, Czech Republic. 20–21 April 2004;

Thiel J. Thermal Expansion of Chemically Bonded Silica Sand. American Foundry Society; Schaumburg, IL USA: 2011. pp. 1–10.

Wang H., Lu Y., Ripplinger K., Detwiler D., Luo A.A. A statistics-based cracking criterion of resin-bonded silica sand for casting process simulation. Metall. Mater. Trans. B. 2017;48:260–267. doi: 10.1007/s11663-016-0865-9. DOI

Horton K.B., Joyce S. Sand Distribution: Its Effect on Core Strength and Casting Quality; Proceedings of the One Hundred First Annual Meeting of the American Foundrymen’s Society; Rosemont, IL, USA. 20–23 April 1997.

Břuska M., Beňo J., Cagala M., Jasinková V. Dilatometric characterization of foundry sands. Arch. Foundry Eng. 2012;12:9–14. doi: 10.2478/v10266-012-0027-8. DOI

Anwar N., Sappinen T., Jalava K., Orkas J. Comparative Experimental Study of Sand and Binder for Flowability and Casting Mold Quality. Adv. Powder Technol. 2021;32:1902–1910. doi: 10.1016/j.apt.2021.03.040. DOI

Conev M., Vasková I., Hrubovčáková M., Hajdúch P. Impact of Silica Sand Granulometry on Bending Strength of Cores Produced by ASK Inotec Process. Manuf. Technol. 2016;16:327–334. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/327. DOI

Ravi S., Thiel J. Use of Specialty Sand Blends to Reduce Veining Defects in Steel Castings. Trans. Am. Foundry Soc. 2016;124:311–318.

Radkovský F., Gawronová M., Merta V., Lichý P., Kroupová I., Nguyenová I., Kielar S., Folta M., Bradáč J., Kocich R. Effect of the Composition of Hybrid Sands on the Change in Thermal Expansion. Materials. 2022;15:6180. doi: 10.3390/ma15176180. PubMed DOI PMC

Bobrowski A., Drožyński D., Jakubski J., Szumera M., Kaczmarska K., Grabowska B. Thermal Deformation of Moulding and Core Sands with an Inorganic Binder Containing a Relaxation Additive. Arch. Foundry Eng. 2018;18:93–98. doi: 10.24425/afe.2018.125175. DOI

Showman R.E., Scheller E.S. Comparing Sand Additives for Steel Castings. Trans. Am. Foundry Soc. 2015;123:113–124.

Showman R.E., Harmon S.B. Further Evaluations of Anti-Veining Sand Additives (12-003) AFS Trans. -Am. Foundry Soc. 2012;120:205.

Ramrattan S., Wells L., Patel P., Shoemaker J. Qualification of chemically bonded sand systems using a casting trial for quantifying interfacial defects. Int. J. Met. 2018;12:214–223. doi: 10.1007/s40962-017-0166-3. DOI

Harmon S., Horvath L., Lawson E., Showman R., Wedell J. A Systematic Approach to Veining Control. Trans. Am. Foundry Soc. 2011;119:361.

Nwaogu U.C., Tiedje N.S. Foundry coating technology: A review. Mater. Sci. Appl. 2011;2:1143–1160. doi: 10.4236/msa.2011.28155. DOI

Kambayashi H., Kurokawa Y., Ota H., Hoshiyama Y., Miyake H. Materials Science Forum. Volume 539. Trans Tech Publications Ltd.; Bäch, Switzerland: 2007. Evaluation with Surface Analysis Equipment, of Casting Defects in Cast Iron Articles; pp. 1110–1115. DOI

Nwaogu U.C., Tiedje N.S., Hansen H.N. Surface Roughness Characterization of Cast Components Using 3D Optical Methods; Proceedings of the CastExpo and 117th Metalcasting Congress; St. Louis, MO, USA. 6–9 April 2013.

Vivas P., Scheller E., Showman R. Transactions of The American Foundry Society, Proceedings of the Conference Meeting 120th Annual Metalcasting Congress Location, Minneapolis, MN, USA, 16–19 April 2016. Volume 124. American Foundry Society; Schaumburg, IL, USA: 2016. Veining Test Castings and Effects of Process Variables; pp. 95–101.

Gilbreath T.J., Zajac P.L., Bruce J. Transactions of the American Foundrymen’s Society. Volume 107. American Foundrymen’s Society, Inc.; Schaumburg, IL, USA: 1999. New Sand Additive Alternative for Veining and Penetration Defects in Thin-Walled Castings; pp. 67–70.

Svidró J., Svidró J.T., Diószegi A. Journal of Physics Conference Series. Volume 1527. IOP Publishing; Bristol, UK: 2020. The role of purity level in foundry silica sand on its thermal properties; p. 012039. DOI

Jonczy I., Kamińska M., Bilewska K., Gerle A. Crystalline phases in the waste foundry sands based on quartz sand matrix. Inżynieria I Ochr. Sr. 2018;21:213–226. doi: 10.17512/ios.2018.3.1. DOI

Platias S., Vatalis K.I., Charalampides G. Suitability of quartz sands for different industrial applications. Procedia Econ. Financ. 2014;14:491–498. doi: 10.1016/S2212-5671(14)00738-2. DOI

Gawronová M., Lichý P., Kroupová I., Obzina T., Beňo J., Nguyenová I., Merta V., Jezierski J., Radkovský F. Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness. Heliyon. 2022;8:e10751. doi: 10.1016/j.heliyon.2022.e10751. PubMed DOI PMC

Burkowicz A., Galos K., Guzik K. The resource base of silica glass sand versus glass industry development: The case of Poland. Resources. 2020;9:134. doi: 10.3390/resources9110134. DOI

Nwaogu U.C., Poulsen T., Stage R.K., Bischoff C., Tiedje N.S. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality. Surf. Coat. Technol. 2011;205:4035–4044. doi: 10.1016/j.surfcoat.2011.02.042. DOI

Stötzel R., Koch C., Ghotge V., Meyer F. New Coatings and Additives Concepts–As An Entire Approach for Defect-and Residue-Free Castings. AKS-Chemicals Technical Report. [(accessed on 21 February 2023)]. Available online: https://www.ask-chemicals.com/fileadmin/user_upload/Download_page/professional_articles/EN/New_Coatings_and_Additive_Concepts_-_As_an_Entire_Approach_for_Defect-_and_Residue-Free_Castings.pdf.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace