Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness

. 2022 Oct ; 8 (10) : e10751. [epub] 20220925

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36212003
Odkazy

PubMed 36212003
PubMed Central PMC9535287
DOI 10.1016/j.heliyon.2022.e10751
PII: S2405-8440(22)02039-4
Knihovny.cz E-zdroje

Obtaining a good surface finish on casting is challenging and depends on the dimension of the sand particles and the processing method of the mold. Evolving modern trends in mould and core production as a binder jetting technology is an option and it is more than desirable to evaluate and remove any possible negative effects. The aim of this study is to compare the influence of furan no-bake technology and 3D printing method on the surface quality of cores and cavities formed in aluminium alloy castings. In addition to the sieve analysis and mechanical properties of the moulding mixtures, the roughness (Ra, Rz) of the cores and resulting casting surfaces of individual samples were compared in this study.

Zobrazit více v PubMed

Stauder B.J., Kerber H., Schumacher P. Foundry sand core property assessment by 3-point bending test evaluation. J. Mater. Process. Technol. 2011;237:188–196.

Izdebska-Szanda I., Palma A., Angrecki M., Żmudzińska M. Environmentally friendly mould technology. Archives of Foundry Technology. 2013;13(3):37–42.

Dobosz S.M., Major-Gabryś K. Archives of Foundry Technology [Internet]; 2008. The Mechanism of Improving the Knock-Out Properties of Moulding Sands with Water Glass; pp. 37–42.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1054.9896&rep=rep1&type=pdf [cited 2022 Apr 6]; 8(1), Available from:

Major-Gabryś K., Dobosz S.M., Jelínek P., Jakubski J., Beňo J. The measurement of high-temperature expansion as the standard of estimation the knock-out properties of moulding sands with hydrated sodium silicate. Arch. Metall. Mater. 2014;59:739–742.

Tuttle R., Ramrattan S., Wells L. As-cast surface characterization for steel using disk-shaped chemically bonded sand specimens. Int. J. Metalcast. 2021;15(2):382–390.

Stojanovic B., Bukovic M., Epler I. Application of aluminium and aluminium alloys in engineering. Applied Engineering Letters. 2018;3(2):52–62.

Javidani M., Larouche D. Application of cast Al-Si alloys in internal combustion engine components. Int. Mater. Rev. 2014;59(3):132–158.

Narayan Prabhu K., Vijeesh V. Review of microstructure evolution in hypereutectic Al-Si alloys and its effect on wear properties. Transaction of the Indian Institute of metals. 2014;67(1):1–18.

Kolsgaard A., Brusethaug S. Fluidity of aluminium alloy AlSi7Mg–SiC particulate composite melts. Mater. Sci. Technol. 1994;10(6):545–551.

Chaudhary A., Dev A.K., Goel A., Butola R., Ranganath M. The mechanical properties of different alloys in friction stir processing: a review. Mater. Today Proc. 2018;5(2):5553–5562.

Birol Y. Impact of grain size on mechanical properties of AlSi7Mg0.3 alloy. Mater. Sci. Eng., A. 2013;559:394–400.

Davis J.R. 1993. Aluminum and aluminium alloys. Materials Park, OH, ASM international.

Liu G., Gao J., Che C., Lu Z., Yi W., Zhang L. Optimization of casting means and heat treatment routines for improving mechanical and corrosion resistance properties of A356-0.54 Sc casting alloy. Mater. Today Commun. 2020;24

Czekaj E., Zych J., Garbacz-Klempka A., Kwak Z. Quality index of the AlSi7Mg0.3 aluminium casting alloy depending on the heat treatment parameters. Arch. Foundry Eng. 2016;16(3):25–28.

Renhe H., Hongmei G., Yaoji T., Qingyun L. Curing mechanism of furan resin modified with different agents and their thermal strength. China Foundry. 2011;8(2):161–165.

Bobrowski A., Grabowska B. The impact of temperature on furan resin and binder structure. Metallurgy and Foundry Engineering. 2012;38(1):73–80.

Menet C., Reynaud P., Fantozzi G., Thibault D., Laforêt A. Thermomechanical properties and fracture of resin-bonded-sand core - experimental study and application in aluminium foundry. EPJ Web Conf. 2017;140

Bargaoui H., Azzouz F., Thibault D., Cailletaud G. Thermomechanical behaviour of resin bonded foundry sand cores during casting. J. Mater. Process. Technol. 2017;246:30–41.

Holtzer M., Bobrowski A., Dańko R., Żymankowska-Kumon S., Kolczyk J. Influence of a liquid metal temperature on a thermal decomposition of a phenolic resin. Arch. Foundry Eng. 2013;13:35–38.

Fox T., Cannon F.S., Brown N.R., Huang H., Furness J.C. Comparison of a new, green foundry binder with conventional foundry binders. Int. J. Adhesion Adhes. 2012;34:38–45.

Kmita A., Fischer C., Hodor K., Holtzer M., Roczniak A. Thermal decomposition of foundry resins: a determination of organic products by thermogravimetry-gas chromatography–mass spectrometry (TG-GC-MS) Arab. J. Chem. 2018;11(3):380–387.

Almaghariz E.S., Conner B.P., Lenner L., Gullapalli R., Manogharan G.P., Lamoncha B., et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores. Int. J. Metalcast. 2016;10(3):240–252.

Upadhyay M., Sivarupan T., El Mansori M. 3D printing for rapid sand castings – a review. J. Manuf. Process. 2017;29:211–220.

Sivarupan T., Upadhyay M., Ali Y., El Mansori M., Dargusch M.S. Reduced consumption of materials and hazardous chemicals for energy efficient production of metal parts through 3D printing of sand molds. J. Clean. Prod. 2019;224:411–420.

Sama S.R., Wang J., Manogharan G. Non-conventional mold design for metal casting using 3D sand-printing. J. Manuf. Process. 2018;34:765–775.

Hackney P.M., Wooldridge R. Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototyp. J. 2017;23(1):7–15.

Druschitz A., Williams C., Snelling D., Seals M. The Minerals, Metals & Materials Society, Organizer. Proceedings of the Shape Casting. 5th International Symposium; 2014. Additive manufacturing supports the production of complex castings; pp. 51–57.

Hackney P., Wooldridge R. 3D sand printing for automotive mass production applications. Int. J. Rapid Manuf. 2017;6(3):134–154.

Sivarupan T., Balasubramani N., Saxena P., Nagarajan D., El Mansori M., Salonitis K., et al. A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting. Addit. Manuf. 2021;40

Snelling D., Li Q., Meisel N., Williams C.B., Batra R.C., Druschitz A.P. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv. Eng. Mater. 2015;17(7):923–932.

Shangguan H., Kang J., Deng C., Yi J., Hu Y., Huang T. 3D-printed rib-enforced shell sand mold for aluminum castings. Int. J. Adv. Manuf. Technol. 2018;96(5-8):2175–2182.

Kang J., Shangguan H., Deng C., Hu Y., Yi J., Wang X., et al. Additive manufacturing-driven mold design for castings. Addit. Manuf. 2018;22:472–478.

ExOne GmbH . Technical information catalogue; Germany: 2020. 002_DE-EN_2020-10_technical Information.

Snelling D.A., Williams C.B., Druschitz A.P. Mechanical and material properties of castings produced via 3D printed molds. Addit. Manuf. 2019;27:199–207.

Snelling D., Williams C., Druschitz A. A comparison of binder burnout and mechanical characteristics of printed and chemically bonded sand molds. International Solid Freeform Fabrication Symposium. University of Texas. 2014 at Austin [Internet] 2014; [cited 2022 Apr 6].

Hackney P., Wooldridge R. Optimisation of additive manufactured sand printed mould material for aluminium castings. Procedia Manuf. 2017;11:457–465.

Snelling D., Blount H., Forman Ch, Ramsburg K., Wentzel A., Williams C., et al. The effects of 3D printed molds on metal castings. International Solid Freeform Fabrication Symposium. University of Texas. 2013 at Austin [Internet] 2013; [cited 2022 Apr 7].

Sivarupan T., El Mansori M., Coniglio N., Dargusch M. Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds. J. Manuf. Process. 2020;54:420–437.

Saptarshee M., Rodríguez de Castro A., El Mansori M. The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. Int. J. Adv. Manuf. Technol. 2018;97(1):1241–1251.

Ahibola O.O., Oloruntoba D.T., Adewuyi B.O. Effects of moulding sand permeability and pouring temperatures on properties of cast 6061 aluminium alloy. International Journal of Metals. 2015;2015

Yang W., Yan Y., Zhang R., Liu L. Effective factors on forming precission in patternless casting manufacturing technique. Tsinghua Sci. Technol. 2009;14(S1):180–185.

Chhabra M., Singh R. Obtaining desired surface roughness of castings produced using ZCast direct metal casting process through Taguchi´s experimental approach. Rapid Prototyp. J. 2012;18(6):458–471.

Shanngguan H., Kang J., Deng Ch, Hu Y., Huang T. 3D-printed shell-truss sand mold for aluminum castings. J. Mater. Process. Technol. 2017;250:247–253.

Mitra S., Rodríguez de Casto A., El Mansori M. On the rapid manufacturing process of functional 3D printed sand molds. J. Manuf. Process. 2019;42:202–212.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...