Effect of the Composition of Hybrid Sands on the Change in Thermal Expansion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008399
Ministry of Education, Youth and Sports
SP2022/15 and SP2022/83
Student grant competition
PubMed
36079561
PubMed Central
PMC9457776
DOI
10.3390/ma15176180
PII: ma15176180
Knihovny.cz E-zdroje
- Klíčová slova
- CERABEADS, discontinuous thermal dilatation, foundry moulding mixture, phase transition, silica sand, synthetic ceramic sands,
- Publikační typ
- časopisecké články MeSH
In the foundry industry, silica sands are the most commonly used type of sands for the production of sand foundry moulds using various types of binders. Their greatest disadvantage is their significant volume changes at elevated temperatures, which are associated with the formation of many foundry defects from stress, such as veining, and thus have a direct influence on the final quality of the casting. In the case of non-silica sands and synthetic sands, the volume stability is more pronounced, but this is accompanied by a higher purchase price. Therefore, a combination of silica sand and synthetic sand CERABEADS is considered in order to influence and reduce the thermal expansion. The hybrid mixtures of sands, and their most suitable ratios, were evaluated in detail using sieve analysis, log W and cumulative curve of granularity. It was found that the addition of 50% CERABEADS achieves a 32.2% reduction in dilatation but may increase the risk of higher stresses. The measurements showed a significant effect of the granulometric composition of the sand on the resulting thermal expansion, where the choice of grain size and sorting can achieve a significant reduction in dilatation with a small addition of CERABEADS.
Zobrazit více v PubMed
Campbell J., Svidró J.T., Svidró J. ASM Handbook, Cast Iron Science and Technology. Volume 1A. ASM International; Novelty, OH, USA: 2017. Molding and Casting Processes; pp. 189–206.
Svidró J., Svidró J.T., Diószegi A. Journal of Physics Conference Series. Volume 1527. IOP Publishing; Bristol, UK: 2020. The role of purity level in foundry silica sand on its thermal properties; p. 012039.
Kowalski J.S. Thermal aspects of temperature transformations in silica sand. Arch. Foundry Eng. 2010;10:111–114.
Anwar N., Sappinen T., Jalava K., Orkas J. Comparative experimental study of sand and binder for flowability and casting mold quality. Adv. Powder Technol. 2021;32:1902–1910. doi: 10.1016/j.apt.2021.03.040. DOI
Chao C.-H., Lu H.-Y. Stress-induced β→α-cristobalite phase transformation in (Na2O + Al2O3)-codoped silica. Mater. Sci. Eng. A. 2002;328:267–276. doi: 10.1016/S0921-5093(01)01703-8. DOI
Molding Methods and Materials. Des Plaines, American Foundrymen’s Society; Schaumburg, IL, USA: 1962.
Weddington V.L., Mobley C.E. Influence of sand surface chemistry on bonding. AFS Trans. 1991;99:825–870.
Gyarmati G., Budavári I., Fegyverneki G., Varga L. The effect of sand quality on the bending strength and thermal distortion of chemically bonded sand cores. Heliyon. 2021;7:e07624. doi: 10.1016/j.heliyon.2021.e07624. PubMed DOI PMC
Svidró J., Diószegi A., Tóth L., Svidró J.T. The influence of thermal expansion of unbonded foundry sands on the deformation of resin bonded cores. Arch. Metall. Mater. 2017;62:795. doi: 10.1515/amm-2017-0118. DOI
Ravi S., Thiel J., Bryant N., Giese S., Schneiter T.J. Use of Dilatometry to Evalute the High Temperature Characteristics of Silica in Chromite Sand; Proceedings of the 73rd World Foundry Congress (WFC 2018); Kraków, Poland. 23–27 September 2018; p. 447.
Thiel J., Ziegler M., Dziekonski P., Joyce S. Investigation into the Technical Limitations of Silica Sand Due to Thermal Expansion. Trans. Am. Foundry Soc. 2007;115:383–400.
Břuska M., Beňo J., Cagala M., Jasinková V. Dilatometric characterization of foundry sands. Arch. Foundry Eng. 2012;12:9–14. doi: 10.2478/v10266-012-0027-8. DOI
Bakhtiyarov S.I., Overfelt R.A., Wang D. Thermophysical property measurements on mold materials: Thermal expansion and density. Int. J. Thermophys. 2005;26:141–149. doi: 10.1007/s10765-005-2359-x. DOI
Svidró J.T., Diószegi A., Svidró J., Ferenczi T. Thermophysical aspects of reclaimed moulding sand addition to the epoxy-SO2 coremaking system studied by Fourier thermal analysis. J. Therm. Anal. Calorim. 2017;130:1779–1789. doi: 10.1007/s10973-017-6612-x. DOI
Thiel J., Ravi S. Causes and solutions to veining defects in iron and steel castings. AFS Trans. 2014;14:1–16.
Czerwinski F., Mir M., Kasprzak W. Application of cores and binders in metalcasting. Int. J. Cast Met. Res. 2015;28:129–139. doi: 10.1179/1743133614Y.0000000140. DOI
Svidró J., Diószegi A., Svidró J.T. The origin of thermal expansion differences in various size fractions of silica sand. Int. J. Cast Met. Res. 2020;33:242–249. doi: 10.1080/13640461.2020.1838078. DOI
Thiel J. AFS Proceedings. AFS Transactions-American Foundry Society; Schaumburg, IL, USA: 2011. Thermal expansion of chemically bonded silica sand; pp. 1–10.
Hrubovčáková M., Vasková I., Benková M., Conev M. Opening material as the possibility of elimination veining in foundries. Arch. Foundry Eng. 2016;16:157–161. doi: 10.1515/afe-2016-0070. DOI
Beňo J., Adamusová K., Merta V., Bajer T. Influence of silica sand on surface casting quality. Arch. Foundry Eng. 2019;19:5–8.
Ramrattan S., Wells L., Patel P., Shoemaker J. Qualification of chemically bonded sand systems using a casting trial for quantifying interfacial defects. Int. J. Met. 2018;12:214–223. doi: 10.1007/s40962-017-0166-3. DOI
Jelínek P. Foundry Sand—Sand Mixtures Binder System. Volume 1. FTIS; Ostrava, Czech Republic: 2000. pp. 49–51.
Thiel J., Ravi S., Bryant N. Advancements in materials for three-dimensional printing of molds and cores. Int. J. Met. 2017;11:3–13. doi: 10.1007/s40962-016-0082-y. DOI
Lauermannová A.M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI