Influence of Zirconium on the Microstructure, Selected Mechanical Properties, and Corrosion Resistance of Ti20Ta20Nb20(HfMo)20-xZrx High-Entropy Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38893994
PubMed Central
PMC11173417
DOI
10.3390/ma17112730
PII: ma17112730
Knihovny.cz E-zdroje
- Klíčová slova
- corrosion resistance, high-entropy alloys, mechanical properties, microstructure, multi-component alloys,
- Publikační typ
- časopisecké články MeSH
The presented work considers the influence of the hafnium and molybdenum to zirconium ratio of Ti20Ta20Nb20(HfMo)20-xZrx (where x = 0, 5, 10, 15, 20 at.%) high-entropy alloys in an as-cast state for potential biomedical applications. The current research continues with our previous results of hafnium's and molybdenum's influence on a similar chemical composition. In the presented study, the microstructure, selected mechanical properties, and corrosion resistance were investigated. The phase formation thermodynamical calculations were also applied to predict solid solution formation after solidification. The calculations predicted the presence of multi-phase, body-centred cubic phases, confirmed using X-ray diffraction and scanning electron microscopy. The chemical composition analysis showed the segregation of alloying elements. Microhardness measurements revealed a decrease in microhardness with increased zirconium content in the studied alloys. The corrosion resistance was determined in Ringer's solution to be higher than that of commercially applied biomaterials. The comparison of the obtained results with previously reported data is also presented and discussed in the presented study.
Zobrazit více v PubMed
Niinomi M. Metallic biomaterials. J. Artif. Organs. 2008;11:105–110. doi: 10.1007/s10047-008-0422-7. PubMed DOI
Wilson J. 1—Metallic biomaterials: State of the art and new challenges. In: Balakrishnan P.M.S., Thomas S., editors. Fundamental Biomaterials: Metals. Woodhead Publishing; Sawston, UK: 2018. pp. 1–33. (Woodhead Publishing Series in Biomaterials).
Sanan A., Haines S.J. Repairing Holes in the Head: A History of Cranioplasty. Neurosurgery. 1997;40:588–603. PubMed
Shah A.M., Jung H., Skirboll S. Materials used in cranioplasty: A history and analysis. Neurosurg. Focus FOC. 2014;36:E19. doi: 10.3171/2014.2.FOCUS13561. PubMed DOI
Donaldson J.A. The use of gold in dentistry. Gold Bull. 1980;13:117–124. doi: 10.1007/BF03216551. PubMed DOI
Abraham C.M. A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent. J. 2014;8:50–55. doi: 10.2174/1874210601408010050. PubMed DOI PMC
Liu X., Chu P.K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001. DOI
Biesiekierski A., Wang J., Abdel-Hady Gepreel M., Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–1669. doi: 10.1016/j.actbio.2012.01.018. PubMed DOI
Zaman H.A., Sharif S., Idris M.H., Kamarudin A. Metallic Biomaterials for Medical Implant Applications: A Review. Appl. Mech. Mater. 2015;735:19–25. doi: 10.4028/www.scientific.net/amm.735.19. DOI
Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236. doi: 10.1016/S0921-5093(97)00806-X. DOI
Semlitsch M., Willert H.G. Properties of implant alloys for artificial hip joints. Med. Biol. Eng. Comput. 1980;18:511–520. doi: 10.1007/BF02443329. PubMed DOI
Jamesh M., Kumar S., Sankara Narayanan T.S.N. Effect of Thermal Oxidation on Corrosion Resistance of Commercially Pure Titanium in Acid Medium. J. Mater. Eng. Perform. 2012;21:900–906. doi: 10.1007/s11665-011-9970-8. DOI
Sivakumar B., Pathak L.C., Singh R. Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer’s solution for bio-implant application. Appl. Surf. Sci. 2017;401:385–398. doi: 10.1016/j.apsusc.2017.01.033. DOI
Callejas J.A., Brizuela A., Ríos-Carrasco B., Gil J. The Characterization of Titanium Particles Released from Bone-Level Titanium Dental Implants: Effect of the Size of Particles on the Ion Release and Cytotoxicity Behaviour. Materials. 2022;15:3636. doi: 10.3390/ma15103636. PubMed DOI PMC
Ali S., Rani A.M.A., Baig Z., Ahmed S.W., Hussain G., Subramaniam K., Hastuty S., Rao T.V. Biocompatibility and corrosion resistance of metallic biomaterials. Corros. Rev. 2020;38:381–402. doi: 10.1515/corrrev-2020-0001. DOI
Lütjering G., Williams J.C. Titanium. Springer; Berlin/Heidelberg, Germany: 2007. Special Properties and Applications of Titanium; pp. 383–415.
Zajc J., Moličnik A., Fokter S.K. Dual Modular Titanium Alloy Femoral Stem Failure Mechanisms and Suggested Clinical Approaches. Materials. 2021;14:3078. doi: 10.3390/ma14113078. PubMed DOI PMC
Kumar S., Sankara Narayanan T.S.N. Electrochemical characterization of β-Ti alloy in Ringer’s solution for implant application. J. Alloys Compd. 2009;479:699–703. doi: 10.1016/j.jallcom.2009.01.036. DOI
Wang K. The use of titanium for medical applications in the USA. Mater. Sci. Eng. A. 1996;213:134–137. doi: 10.1016/0921-5093(96)10243-4. DOI
Assis S.L., Wolynec S., Costa I. The electrochemical behaviour of Ti-13Nb-13Zr alloy in various solutions. Mater. Corros. 2008;59:739–743. doi: 10.1002/maco.200804148. DOI
Yamamuro T., Nakamura T., Iida H., Matsuda Y. In: A New Model of Bone-Conserving Cementless Hip Prosthesis Made of High-Tech Materials: Kobelco H-5 BT—Joint Arthroplasty. Imura S., Wada M., Omori H., editors. Springer; Tokyo, Japan: 1999. pp. 213–224.
Simka W., Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L. Electrochemical polishing of Ti–13Nb–13Zr alloy. Surf. Coat. Technol. 2012;213:239–246. doi: 10.1016/j.surfcoat.2012.10.055. DOI
Qazi J.I., Rack H.J. Metastable Beta Titanium Alloys for Orthopedic Applications. Adv. Eng. Mater. 2005;7:993–998. doi: 10.1002/adem.200500060. DOI
Iijima Y., Nagase T., Matsugaki A., Wang P., Ameyama K., Nakano T. Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials. Mater. Des. 2021;202:109548. doi: 10.1016/j.matdes.2021.109548. DOI
Todai M., Nagase T., Hori T., Matsugaki A., Sekita A., Nakano T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017;129:65–68. doi: 10.1016/j.scriptamat.2016.10.028. DOI
Hori T., Nagase T., Todai M., Matsugaki A., Nakano T. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scr. Mater. 2019;172:83–87. doi: 10.1016/j.scriptamat.2019.07.011. DOI
Glowka K., Zubko M., Świec P., Prusik K., Szklarska M., Chrobak D., Lábár J.L., Stróż D. Influence of Molybdenum on the Microstructure, Mechanical Properties and Corrosion Resistance of Ti20Ta20Nb20(ZrHf)20−xMox (Where: x = 0, 5, 10, 15, 20) High Entropy Alloys. Materials. 2022;15:393. doi: 10.3390/ma15010393. PubMed DOI PMC
Glowka K., Zubko M., Gębura S., Świec P., Prusik K., Szklarska M., Stróż D. Influence of Hafnium Addition on the Microstructure, Microhardness and Corrosion Resistance of Ti20Ta20Nb20(ZrMo)20−xHfx (where x = 0, 5, 10, 15 and 20 at.%) High Entropy Alloys. Materials. 2023;16:1456. doi: 10.3390/ma16041456. PubMed DOI PMC
de Oliveira T.G., Fagundes D.V., Capellato P., Sachs D., da Silva A.A.A.P. A Review of Biomaterials Based on High-Entropy Alloys. Metals. 2022;12:1940. doi: 10.3390/met12111940. DOI
Dercz G., Matuła I., Maszybrocka J. Properties of Porous Ti–26Nb–6Mo–1.5Sn Alloy Produced via Powder Metallurgy for Biomedical Applications. Phys. Met. Metallogr. 2019;120:1384–1391. doi: 10.1134/S0031918X19130040. DOI
Eisenbarth E., Velten D., Müller M., Thull R., Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–5713. doi: 10.1016/j.biomaterials.2004.01.021. PubMed DOI
Yang W., Pang S., Liu Y., Wang Q., Liaw P.K., Zhang T. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics. 2022;141:107421. doi: 10.1016/j.intermet.2021.107421. DOI
Wang S.P., Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C. 2017;73:80–89. doi: 10.1016/j.msec.2016.12.057. PubMed DOI
Motallebzadeh A., Peighambardoust N.S., Sheikh S., Murakami H., Guo S., Canadinc D. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics. 2019;113:106572. doi: 10.1016/j.intermet.2019.106572. DOI
Li Z., Qiao D., Xu Y., Zhou E., Yang C., Yuan X., Lu Y., Gu J.-D., Wolfgang S., Xu D., et al. Cu-bearing high-entropy alloys with excellent antiviral properties. J. Mater. Sci. Technol. 2021;84:59–64. doi: 10.1016/j.jmst.2020.12.027. PubMed DOI PMC
Gurel S., Yagci M.B., Bal B., Canadinc D. Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants. Mater. Chem. Phys. 2020;254:123377. doi: 10.1016/j.matchemphys.2020.123377. DOI
Glowka K., Zubko M., Świec P., Prusik K., Albrecht R., Dercz G., Loskot J., Witala B., Stróż D. Microstructure and mechanical properties of Co-Cr-Mo-Si-Y-Zr high entropy alloy. Metals. 2020;10:1456. doi: 10.3390/met10111456. DOI
Yeh J.-W. Overview of High-Entropy Alloys. In: Gao M.C., Yeh J.-W., Liaw P.K., Zhang Y., editors. High-Entropy Alloys: Fundamentals and Applications. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–19.
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Murty B.S., Yeh J.W., Ranganathan S. In: Chapter 2—High-Entropy Alloys: Basic Concepts. Murty B.S., Yeh J.W., Ranganathan S.B.T.-H.E.A., editors. Butterworth-Heinemann; Boston, MA, USA: 2014. pp. 13–35.
Málek J., Hnilica F., Veselý J., Smola B., Kolařík K., Fojt J., Vlach M., Kodetová V. The effect of Zr on the microstructure and properties of Ti-35Nb-XZr alloy. Mater. Sci. Eng. A. 2016;675:1–10. doi: 10.1016/j.msea.2016.07.069. DOI
Cahn J.W. Critical point wetting. J. Chem. Phys. 1977;66:3667–3672. doi: 10.1063/1.434402. DOI
Straumal B.B., Korneva A., Lopez G.A., Kuzmin A., Rabkin E., Gerstein G., Straumal A.B., Gornakova A.S. Grain Boundary Wetting by a Second Solid Phase in the High Entropy Alloys: A Review. Materials. 2021;14:7506. doi: 10.3390/ma14247506. PubMed DOI PMC
Straumal B.B., Korneva A., Kuzmin A., Lopez G.A., Rabkin E., Straumal A.B., Gerstein G., Gornakova A.S. The grain boundary wetting phenomena in the ti-containing high-entropy alloys: A review. Metals. 2021;11:1881. doi: 10.3390/met11111881. PubMed DOI PMC
Straumal B., Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci. 2004;12:147–155. doi: 10.1023/B:INTS.0000028645.30358.f5. DOI
Purohit R., Patel K.K., Gupta G.K., Rana R.S. Development of Ni-Ti Shape Memory Alloys through Novel Powder Metallurgy Route and Effect of Rolling on their properties. Mater. Today Proc. 2017;4:5330–5335. doi: 10.1016/j.matpr.2017.05.043. DOI
Gao Y., Liu Y., Wang L., Yang X., Zeng T., Sun L., Wang R. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3. Surf. Coat. Technol. 2022;435:128264. doi: 10.1016/j.surfcoat.2022.128264. DOI
Wang D., Wang Y., Wu S., Lin H., Yang Y., Fan S., Gu C., Wang J., Song C. Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting. Materials. 2017;10:35. doi: 10.3390/ma10010035. PubMed DOI PMC
Zhu B., Zhang Y., Chen Y., Yuan P., Wang W., Duan H., Wang Z. Synthesis, Characterization and Antimicrobial Studies of Ti-40Nb-10Ag Implant Biomaterials. Metals. 2022;12:1391. doi: 10.3390/met12081391. DOI
Prusa F., Bernatikova A., Palan J. Ultra-High Strength Ti Grade 4 Prepared by Intensive Plastic Deformation. Manuf. Technol. J. 2017;17:819–822. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/819. DOI
Wang C.T., Gao N., Gee M.G., Wood R.J.K., Langdon T.G. Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear. 2012;280–281:28–35. doi: 10.1016/j.wear.2012.01.012. DOI
Kunčická L., Kocich R., Benč M., Dvořák J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials. 2022;15:6291. doi: 10.3390/ma15186291. PubMed DOI PMC
Stea S., Visentin M., Savarino L., Ciapetti G., Donati M.E., Moroni A., Caja V., Pizzoferrato A. Microhardness of bone at the interface with ceramic-coated metal implants. J. Biomed. Mater. Res. 1995;29:695–699. doi: 10.1002/jbm.820290604. PubMed DOI
Szklarska M., Łosiewicz B., Dercz G., Zubko M., Albrecht R., Stróz D. Charac terization of long-term corros ion performance of ti15mo alloy in saline solution. Arch. Metall. Mater. 2019;64:773–778. doi: 10.24425/amm.2019.127612. DOI
Samuel S., Nag S., Nasrazadani S., Ukirde V., El Bouanani M., Mohandas A., Nguyen K., Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J. Biomed. Mater. Res.-Part A. 2010;94:1251–1256. doi: 10.1002/jbm.a.32782. PubMed DOI
Szklarska M., Dercz G., Rak J., Simka W., Losiewicz B. The influence of passivation type on corrosion resistance of Ti15Mo alloy in simulated body fluids. Arch. Metall. Mater. 2015;60:2687–2693. doi: 10.1515/amm-2015-0433. DOI
Handzlik P., Fitzner K. Corrosion resistance of Ti and Ti-Pd alloy in phosphate buffered saline solutions with and without H2O2 addition. Trans. Nonferrous Met. Soc. China. 2013;23:866–875. doi: 10.1016/S1003-6326(13)62541-8. DOI
Cai Z., Shafer T., Watanabe I., Nunn M.E., Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24:213–218. doi: 10.1016/S0142-9612(02)00293-4. PubMed DOI
Hryniewicz T., Rokosz K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corros. Methods Mater. 2014;61:57–64. doi: 10.1108/ACMM-03-2013-1249. DOI
Godley R., Starosvetsky D., Gotman I. Corrosion behavior of a low modulus β-Ti-45 % Nb. J. Mater. Scince Med. 2006;17:63–67. doi: 10.1007/s10856-006-6330-6. PubMed DOI
Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials. 1996;17:2003–2008. doi: 10.1016/0142-9612(95)00352-5. PubMed DOI
Song Q.-T., Xu J. (TiZrNbTa)90Mo10 high-entropy alloy: Electrochemical behavior and passive film characterization under exposure to Ringer’s solution. Corros. Sci. 2020;167:108513. doi: 10.1016/j.corsci.2020.108513. DOI