Large-Scale Alternative Polyadenylation-Wide Association Studies to Identify Putative Cancer Susceptibility Genes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R37 CA227130
NCI NIH HHS - United States
R01 CA235553
NCI NIH HHS - United States
R01 CA269589
NCI NIH HHS - United States
R37CA227130
National Cancer Institute (NCI)
R01 CA202981
NCI NIH HHS - United States
PubMed
38759092
PubMed Central
PMC11326986
DOI
10.1158/0008-5472.can-24-0521
PII: 745418
Knihovny.cz E-zdroje
- MeSH
- 3' nepřekládaná oblast * genetika MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * genetika MeSH
- polyadenylace * MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3' nepřekládaná oblast * MeSH
- messenger RNA MeSH
Alternative polyadenylation (APA) modulates mRNA processing in the 3'-untranslated regions (3' UTR), affecting mRNA stability and translation efficiency. Research into genetically regulated APA has the potential to provide insights into cancer risk. In this study, we conducted large APA-wide association studies to investigate associations between APA levels and cancer risk. Genetic models were built to predict APA levels in multiple tissues using genotype and RNA sequencing data from 1,337 samples from the Genotype-Tissue Expression project. Associations of genetically predicted APA levels with cancer risk were assessed by applying the prediction models to data from large genome-wide association studies of six common cancers among European ancestry populations: breast, ovarian, prostate, colorectal, lung, and pancreatic cancers. A total of 58 risk genes (corresponding to 76 APA sites) were associated with at least one type of cancer, including 25 genes previously not linked to cancer susceptibility. Of the identified risk APAs, 97.4% and 26.3% were supported by 3'-UTR APA quantitative trait loci and colocalization analyses, respectively. Luciferase reporter assays for four selected putative regulatory 3'-UTR variants demonstrated that the risk alleles of 3'-UTR variants, rs324015 (STAT6), rs2280503 (DIP2B), rs1128450 (FBXO38), and rs145220637 (LDHA), significantly increased the posttranscriptional activities of their target genes compared with reference alleles. Furthermore, knockdown of the target genes confirmed their ability to promote proliferation and migration. Overall, this study provides insights into the role of APA in the genetic susceptibility to common cancers. Significance: Systematic evaluation of associations of alternative polyadenylation with cancer risk reveals 58 putative susceptibility genes, highlighting the contribution of genetically regulated alternative polyadenylation of 3'UTRs to genetic susceptibility to cancer.
Cancer Epidemiology Division Cancer Council Victoria Melbourne Australia
Center for Public Health Genomics University of Virginia Charlottesville Virginia
Department of Biochemistry and Molecular Biology University of Calgary Calgary Canada
Department of Biomedical Informatics Vanderbilt University School of Medicine Nashville Tennessee
Department of Community Medicine and Epidemiology Lady Davis Carmel Medical Center Haifa Israel
Department of Epidemiology University of Washington School of Public Health Seattle Washington
Department of Medical Genetics University of Calgary Calgary Canada
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle Washington
Zobrazit více v PubMed
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature genetics 2020;52:56–73 PubMed PMC
Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017;551:92–4 PubMed PMC
Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature genetics 2017;49:680–91 PubMed PMC
McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nature genetics 2017;49:1126–32 PubMed PMC
Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature genetics 2021;53:65–75 PubMed PMC
Chen Z, Wen W, Beeghly-Fadiel A, Shu XO, Diez-Obrero V, Long J, et al. Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers. American journal of human genetics 2019;105:477–92 PubMed PMC
Guo X, Lin W, Bao J, Cai Q, Pan X, Bai M, et al. A Comprehensive cis-eQTL Analysis Revealed Target Genes in Breast Cancer Susceptibility Loci Identified in Genome-wide Association Studies. American journal of human genetics 2018;102:890–903 PubMed PMC
Li Q, Seo JH, Stranger B, McKenna A, Pe’er I, Laframboise T, et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 2013;152:633–41 PubMed PMC
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nature genetics 2019;51:76–87 PubMed PMC
Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nature genetics 2016;48:245–52 PubMed PMC
Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nature genetics 2015;47:1091–8 PubMed PMC
Guo X, Lin W, Wen W, Huyghe J, Bien S, Cai Q, et al. Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology 2021;160:1164–78 e6 PubMed PMC
Wu L, Wang J, Cai Q, Cavazos TB, Emami NC, Long J, et al. Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer research 2019;79:3192–204 PubMed PMC
Wu L, Shi W, Long J, Guo X, Michailidou K, Beesley J, et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature genetics 2018;50:968–78 PubMed PMC
Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al. A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. J Natl Cancer Inst 2020;112:1003–12 PubMed PMC
Lu Y, Beeghly-Fadiel A, Wu L, Guo X, Li B, Schildkraut JM, et al. A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer research 2018;78:5419–30 PubMed PMC
Gusev A, Lawrenson K, Lin X, Lyra PC Jr., Kar S, Vavra KC, et al. A transcriptome-wide association study of high-grade serous epithelial ovarian cancer identifies new susceptibility genes and splice variants. Nature genetics 2019;51:815–23 PubMed PMC
Mayr C Regulation by 3’-Untranslated Regions. Annu Rev Genet 2017;51:171–94 PubMed
Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 2017;18:18–30 PubMed PMC
Li L, Huang KL, Gao Y, Cui Y, Wang G, Elrod ND, et al. An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. Nature genetics 2021;53:994–1005 PubMed
Garrido-Martin D, Borsari B, Calvo M, Reverter F, Guigo R. Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome. Nature communications 2021;12:727 PubMed PMC
de Goede OM, Nachun DC, Ferraro NM, Gloudemans MJ, Rao AS, Smail C, et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 2021;184:2633–48 e19 PubMed PMC
Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nature genetics 2013;45:580–5 PubMed PMC
Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature genetics 2020;52:572–81 PubMed PMC
Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature genetics 2018;50:928–36 PubMed PMC
Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 2018;9:556. PubMed PMC
Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nature protocols 2012;7:500–7 PubMed PMC
Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, Replication DIG, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature genetics 2012;44:369–75, S1–3 PubMed PMC
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS genetics 2014;10:e1004383. PubMed PMC
Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in Sequencing Studies. American journal of human genetics 2019;104:410–21 PubMed PMC
Cui Y, Peng F, Wang D, Li Y, Li JS, Li L, Li W. 3’aQTL-atlas: an atlas of 3’UTR alternative polyadenylation quantitative trait loci across human normal tissues. Nucleic Acids Res 2021 PubMed PMC
Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic acids research 2016;44:D877–81 PubMed PMC
Wang Y, Zhang Y, Su X, Qiu Q, Yuan Y, Weng C, et al. Circular RNA circDVL1 inhibits clear cell renal cell carcinoma progression through the miR-412–3p/PCDH7 axis. Int J Biol Sci 2022;18:1491–507 PubMed PMC
Nie W, Li M, Liu B, Zhang Y, Wang Y, Wang J, et al. A circular RNA, circPTPN14, increases MYC transcription by interacting with FUBP1 and exacerbates renal fibrosis. Cell Mol Life Sci 2022;79:595. PubMed PMC
Wen W, Chen Z, Bao J, Long Q, Shu XO, Zheng W, Guo X. Genetic variations of DNA bindings of FOXA1 and co-factors in breast cancer susceptibility. Nature communications 2021;12:5318 PubMed PMC
He J, Wen W, Beeghly A, Chen Z, Cao C, Shu XO, et al. Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers. Nature communications 2022;13:7118 PubMed PMC
Mancuso N, Gayther S, Gusev A, Zheng W, Penney KL, Kote-Jarai Z, et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nature communications 2018;9:4079 PubMed PMC
Yuan Y, Bao J, Chen Z, Villanueva AD, Wen W, Wang F, et al. Multi-omics analysis to identify susceptibility genes for colorectal cancer. Human molecular genetics 2021;30:321–30 PubMed PMC
Fernandez-Rozadilla C, Timofeeva M, Chen Z, Law P, Thomas M, Schmit S, et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat Genet 2022 PubMed PMC
Bosse Y, Li Z, Xia J, Manem V, Carreras-Torres R, Gabriel A, et al. Transcriptome-wide association study reveals candidate causal genes for lung cancer. International journal of cancer 2020;146:1862–78 PubMed PMC
Byun J, Han Y, Li Y, Xia J, Long E, Choi J, et al. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nature genetics 2022;54:1167–77 PubMed PMC
Huyghe JR, Harrison TA, Bien SA, Hampel H, Figueiredo JC, Schmit SL, et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021;70:1325–34 PubMed PMC
Urbut SM, Wang G, Carbonetto P, Stephens M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat Genet 2019;51:187–95 PubMed PMC
Cheng F, Zhao J, Wang Y, Lu W, Liu Z, Zhou Y, et al. Comprehensive characterization of protein-protein interactions perturbed by disease mutations. Nature genetics 2021;53:342–53 PubMed PMC
Zhou Y, Zhao J, Fang J, Martin W, Li L, Nussinov R, et al. My personal mutanome: a computational genomic medicine platform for searching network perturbing alleles linking genotype to phenotype. Genome Biol 2021;22:53. PubMed PMC
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations (vol 173, 371.e1, 2018). Cell 2018;174:1034–5 PubMed PMC
Dietlein F, Weghorn D, Taylor-Weiner A, Richters A, Reardon B, Liu D, et al. Identification of cancer driver genes based on nucleotide context. Nature Genetics 2020;52:208–+ PubMed PMC
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018;18:696–705 PubMed PMC
Kim S, Kim DH, Jung WH, Koo JS. Succinate dehydrogenase expression in breast cancer. Springerplus 2013;2:299. PubMed PMC
Mazza M, Pelicci PG. Is PML a Tumor Suppressor? Front Oncol 2013;3:174. PubMed PMC
Ponente M, Campanini L, Cuttano R, Piunti A, Delledonne GA, Coltella N, et al. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes. JCI Insight 2017;2:e87380. PubMed PMC
Sachini N, Arampatzi P, Klonizakis A, Nikolaou C, Makatounakis T, Lam EW, et al. Promyelocytic leukemia protein (PML) controls breast cancer cell proliferation by modulating Forkhead transcription factors. Mol Oncol 2019;13:1369–87 PubMed PMC
Pacheco MP, Bintener T, Ternes D, Kulms D, Haan S, Letellier E, Sauter T. Identifying and targeting cancer-specific metabolism with network-based drug target prediction. EBioMedicine 2019;43:98–106 PubMed PMC
Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol 2006;16:253–64 PubMed
Buttyan R, Sawczuk IS, Benson MC, Siegal JD, Olsson CA. Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 1987;11:327–37 PubMed
Fleming WH, Hamel A, MacDonald R, Ramsey E, Pettigrew NM, Johnston B, et al. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 1986;46:1535–8 PubMed
Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008;21:1156–67 PubMed PMC
Hawksworth D, Ravindranath L, Chen Y, Furusato B, Sesterhenn IA, McLeod DG, et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis 2010;13:311–5 PubMed
Lin Y, Li B, Yang X, Liu T, Shi T, Deng B, et al. Non-hematopoietic STAT6 induces epithelial tight junction dysfunction and promotes intestinal inflammation and tumorigenesis. Mucosal Immunol 2019;12:1304–15 PubMed
Yu X, Zhang Y, Wu B, Kurie JM, Pertsemlidis A. The miR-195 Axis Regulates Chemoresistance through TUBB and Lung Cancer Progression through BIRC5. Mol Ther Oncolytics 2019;14:288–98 PubMed PMC
Cui Y, Arnold FJ, Peng F, Wang D, Li JS, Michels S, et al. Alternative polyadenylation transcriptome-wide association study identifies APA-linked susceptibility genes in brain disorders. Nature communications 2023;14:583 PubMed PMC