Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
R01 CA067941
NCI NIH HHS - United States
U01 HG004446
NHGRI NIH HHS - United States
K05 CA154337
NCI NIH HHS - United States
HHSN261201300012I
NCI NIH HHS - United States
HHSN268201100003I
NHLBI NIH HHS - United States
U01 CA067941
NCI NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
HHSN268201100001I
NHLBI NIH HHS - United States
R01 CA197350
NCI NIH HHS - United States
R01 CA076366
NCI NIH HHS - United States
R01 CA188214
NCI NIH HHS - United States
R35 CA197735
NCI NIH HHS - United States
R01 CA204279
NCI NIH HHS - United States
U01 HG004438
NHGRI NIH HHS - United States
R37 CA227130
NCI NIH HHS - United States
P30 ES010126
NIEHS NIH HHS - United States
C8221/A19170
Cancer Research UK - United Kingdom
U01 CA074799
NCI NIH HHS - United States
U10 CA037429
NCI NIH HHS - United States
U01 CA182883
NCI NIH HHS - United States
R01 CA072520
NCI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
14136
Cancer Research UK - United Kingdom
HHSN261201000035C
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
P30 CA006973
NCI NIH HHS - United States
U24 CA074783
NCI NIH HHS - United States
19167
Cancer Research UK - United Kingdom
P01 CA055075
NCI NIH HHS - United States
N01 CN067009
NCI NIH HHS - United States
R01 CA160356
NCI NIH HHS - United States
UG1 CA189974
NCI NIH HHS - United States
R01 CA151993
NCI NIH HHS - United States
P30 DK058404
NIDDK NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
P30 DK034987
NIDDK NIH HHS - United States
Department of Health - United Kingdom
P50 CA150964
NCI NIH HHS - United States
R01 CA048998
NCI NIH HHS - United States
U01 CA137088
NCI NIH HHS - United States
R01 CA189184
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
MR/N003284/1
Medical Research Council - United Kingdom
Z01 CP010200
Intramural NIH HHS - United States
U24 CA074794
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
N01PC35137
NCI NIH HHS - United States
R01 CA066635
NCI NIH HHS - United States
U24 CA074806
NCI NIH HHS - United States
U01 CA206110
NCI NIH HHS - United States
1000143
Medical Research Council - United Kingdom
C490/A16561
Cancer Research UK - United Kingdom
R21 CA191312
NCI NIH HHS - United States
HHSN268201200008C
NHLBI NIH HHS - United States
R01 CA137178
NCI NIH HHS - United States
U24 CA097735
NCI NIH HHS - United States
U01 CA074794
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
P30 CA014089
NCI NIH HHS - United States
G0401527
Medical Research Council - United Kingdom
C570/A16491
Cancer Research UK - United Kingdom
R01 CA081488
NCI NIH HHS - United States
R01 CA143237
NCI NIH HHS - United States
N01PC35142
NCI NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA201407
NCI NIH HHS - United States
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
MR/M012190/1
Medical Research Council - United Kingdom
HHSN268201100002C
WHI NIH HHS - United States
R01 CA207371
NCI NIH HHS - United States
R03 CA153323
NCI NIH HHS - United States
HHSN261201000035I
NCI NIH HHS - United States
G1000143
Medical Research Council - United Kingdom
16561
Cancer Research UK - United Kingdom
R01 CA144040
NCI NIH HHS - United States
R01 CA042182
NCI NIH HHS - United States
C588/A19167
Cancer Research UK - United Kingdom
R01 CA060987
NCI NIH HHS - United States
U01 CA097735
NCI NIH HHS - United States
T32 ES013678
NIEHS NIH HHS - United States
R01 CA136726
NCI NIH HHS - United States
P30 CA016058
NCI NIH HHS - United States
UM1 CA167552
NCI NIH HHS - United States
K05 CA152715
NCI NIH HHS - United States
P20 CA252728
NCI NIH HHS - United States
UM1 CA167551
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
HHSN261201500005C
NCI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
U01 CA084968
NCI NIH HHS - United States
KL2 TR000421
NCATS NIH HHS - United States
U24 CA074799
NCI NIH HHS - United States
P01 CA196569
NCI NIH HHS - United States
001
World Health Organization - International
U01 CA074806
NCI NIH HHS - United States
U24 CA074800
NCI NIH HHS - United States
P50 CA127003
NCI NIH HHS - United States
UM1 CA182883
NCI NIH HHS - United States
K07 CA190673
NCI NIH HHS - United States
HHSN268201200008I
NHLBI NIH HHS - United States
R01 CA193677
NCI NIH HHS - United States
U01 CA164973
NCI NIH HHS - United States
R37 CA054281
NCI NIH HHS - United States
U01 CA074800
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
R01 CA097325
NCI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
N01 CN043302
NCI NIH HHS - United States
PubMed
33058866
PubMed Central
PMC7956223
DOI
10.1053/j.gastro.2020.08.062
PII: S0016-5085(20)35243-4
Knihovny.cz E-zdroje
- Klíčová slova
- CABLES2, Colorectal Cancer, Susceptibility Genes, TWAS,
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci * MeSH
- genový knockdown MeSH
- jednonukleotidový polymorfismus MeSH
- karcinogeneze genetika MeSH
- kohortové studie MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé MeSH
- modely genetické * MeSH
- nádorové biomarkery genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- rizikové faktory MeSH
- sekvenování transkriptomu MeSH
- studie případů a kontrol MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- nádorové biomarkery MeSH
BACKGROUND AND AIMS: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
Behavioral and Epidemiology Research Group American Cancer Society Atlanta Georgia
Center for Public Health Genomics University of Virginia Charlottesville Virginia
Department of Cancer Epidemiology H Lee Moffitt Cancer Center and Research Institute Tampa Florida
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
Department of Family Medicine University of Virginia Charlottesville Virginia
Department of General Surgery University Hospital Rostock Rostock Germany
Department of Genome Sciences University of Washington Seattle Washington
Department of Hematology Oncology Chonnam National University Hospital Hwasun South Korea
Department of Internal Medicine University of Utah Salt Lake City Utah
Department of Medicine 1 University Hospital Dresden Technische Universität Dresden Dresden Germany
Department of Public Health and Primary Care University of Cambridge Cambridge United Kingdom
Department of Radiation Sciences Oncology Unit Umeå University Umeå Sweden
Department of Surgery Chonnam National University Hwasun Hospital and Medical School Hwasun Korea
Division of Human Nutrition and Health Wageningen University and Research Wageningen the Netherlands
Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle Washington
Health Sciences Research Mayo Clinic Scottsdale Arizona
Institute for Health Research Kaiser Permanente Colorado Denver Colorado
Institute of Cancer Research Department of Medicine 1 Medical University Vienna Vienna Austria
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Leeds Institute of Cancer and Pathology University of Leeds Leeds United Kingdom
Service de Génétique Médicale Centre Hospitalier Universitaire Nantes France
SWOG Statistical Center Fred Hutchinson Cancer Research Center Seattle Washington
Zobrazit více v PubMed
Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013;45:136–44. PubMed PMC
Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330–7. PubMed PMC
Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011;6:479–507. PubMed
Zeng C, Matsuda K, Jia WH, et al. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology 2016. PubMed PMC
Michailidou K, Beesley J, Lindstrom S, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 2015;47:373–80. PubMed PMC
Al-Tassan NA, Whiffin N, Hosking FJ, et al. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep 2015;5:10442. PubMed PMC
Wang H, Burnett T, Kono S, et al. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nat Commun 2014;5:4613. PubMed PMC
Schmit SL, Schumacher FR, Edlund CK, et al. A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. Carcinogenesis 2014;35:2512–9. PubMed PMC
Zhang B, Jia WH, Matsuda K, et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nat Genet 2014;46:533–42. PubMed PMC
Figueiredo JC, Hsu L, Hutter CM, et al. Genome-wide diet-gene interaction analyses for risk of colorectal cancer. PLoS Genet 2014;10:e1004228. PubMed PMC
Whiffin N, Hosking FJ, Farrington SM, et al. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet 2014;23:4729–37. PubMed PMC
Zhang B, Jia WH, Matsuo K, et al. Genome-wide association study identifies a new SMAD7 risk variant associated with colorectal cancer risk in East Asians. Int J Cancer 2014;135:948–55. PubMed PMC
Peters U, Jiao S, Schumacher FR, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144:799–807 e24. PubMed PMC
Dunlop MG, Dobbins SE, Farrington SM, et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet 2012;44:770–6. PubMed PMC
Peters U, Hutter CM, Hsu L, et al. Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet 2012;131:217–34. PubMed PMC
Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet 2011;7:e1002105. PubMed PMC
Cui R, Okada Y, Jang SG, et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 2011;60:799–805. PubMed PMC
Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet 2019;51:76–87. PubMed PMC
Schmit SL, Edlund CK, Schumacher FR, et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J Natl Cancer Inst 2019;111:146–157. PubMed PMC
Law PJ, Timofeeva M, Fernandez-Rozadilla C, et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun 2019;10:2154. PubMed PMC
Lu Y, Kweon SS, Tanikawa C, et al. Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer. Gastroenterology 2019;156:1455–1466. PubMed PMC
Gusev A, Lee SH, Trynka G, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet 2014;95:535–52. PubMed PMC
Guo X, Cai Q, Bao P, et al. Long-term soy consumption and tumor tissue MicroRNA and gene expression in triple-negative breast cancer. Cancer 2016;122:2544–51. PubMed PMC
Zeng C, Guo X, Long J, et al. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Res 2016;18:64. PubMed PMC
Guo X, Lin W, Bao J, et al. A Comprehensive cis-eQTL Analysis Revealed Target Genes in Breast Cancer Susceptibility Loci Identified in Genome-wide Association Studies. Am J Hum Genet 2018;102:890–903. PubMed PMC
Chen Z, Wen W, Beeghly-Fadiel A, et al. Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers. Am J Hum Genet 2019. PubMed PMC
Biancolella M, Fortini BK, Tring S, et al. Identification and characterization of functional risk variants for colorectal cancer mapping to chromosome 11q23.1. Hum Mol Genet 2014;23:2198–209. PubMed PMC
Closa A, Cordero D, Sanz-Pamplona R, et al. Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. Carcinogenesis 2014;35:2039–46. PubMed PMC
Peltekova VD, Lemire M, Qazi AM, et al. Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancer-associated variants. Int J Cancer 2014;134:2330–41. PubMed PMC
Hofer P, Hagmann M, Brezina S, et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget 2017;8:98623–98634. PubMed PMC
Chen Z, Wen W, Beeghly-Fadiel A, et al. Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers. Am J Hum Genet 2019;In press. PubMed PMC
Rao SS, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014;159:1665–80. PubMed PMC
Jin F, Li Y, Dixon JR, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013;503:290–4. PubMed PMC
Mifsud B, Tavares-Cadete F, Young AN, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 2015;47:598–606. PubMed
Jager R, Migliorini G, Henrion M, et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun 2015;6:6178. PubMed PMC
Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 2015;47:1091–8. PubMed PMC
Bien SA, Su YR, Conti DV, et al. Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. Hum Genet 2019;138:307–326. PubMed PMC
Su YR, Di C, Bien S, et al. A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. Am J Hum Genet 2018;102:904–919. PubMed PMC
Wu L, Shu X, Bao J, et al. Analysis of Over 140,000 European Descendants Identifies Genetically Predicted Blood Protein Biomarkers Associated with Prostate Cancer Risk. Cancer Res 2019. PubMed PMC
Guo X, Long J, Chen Z, et al. Discovery of rare coding variants in OGDHL and BRCA2 in relation to breast cancer risk in Chinese women. Int J Cancer 2020;146:2175–2181. PubMed PMC
Guo X, Shi J, Cai Q, et al. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes. Hum Mol Genet 2018;27:853–859. PubMed PMC
Stegle O, Parts L, Piipari M, et al. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc 2012;7:500–7. PubMed PMC
Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38:904–9. PubMed
Barbeira AN, Dickinson SP, Bonazzola R, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 2018;9:1825. PubMed PMC
Lu Y, Beeghly-Fadiel A, Wu L, et al. A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 2018;78:5419–5430. PubMed PMC
Wu L, Shi W, Long J, et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet 2018;50:968–978. PubMed PMC
Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 2012;44:369–75, S1–3. PubMed PMC
Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 2016;48:481–7. PubMed
Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 2016;48:245–52. PubMed PMC
Zukerberg LR, DeBernardo RL, Kirley SD, et al. Loss of cables, a cyclin-dependent kinase regulatory protein, is associated with the development of endometrial hyperplasia and endometrial cancer. Cancer Res 2004;64:202–8. PubMed
Wu CL, Kirley SD, Xiao H, et al. Cables enhances cdk2 tyrosine 15 phosphorylation by Wee1, inhibits cell growth, and is lost in many human colon and squamous cancers. Cancer Res 2001;61:7325–32. PubMed
Bonifant CL, Waldman T. ‘Cables’ suspends cancer in mice. Cancer Biol Ther 2005;4:864–5. PubMed
Kirley SD, D’Apuzzo M, Lauwers GY, et al. The Cables gene on chromosome 18Q regulates colon cancer progression in vivo. Cancer Biol Ther 2005;4:861–3. PubMed
Park DY, Sakamoto H, Kirley SD, et al. The Cables gene on chromosome 18q is silenced by promoter hypermethylation and allelic loss in human colorectal cancer. Am J Pathol 2007;171:1509–19. PubMed PMC
Arnason T, Pino MS, Yilmaz O, et al. Cables1 is a tumor suppressor gene that regulates intestinal tumor progression in Apc(Min) mice. Cancer Biol Ther 2013;14:672–8. PubMed PMC
Labriet A, Levesque E, Cecchin E, et al. Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients. Sci Rep 2019;9:13008. PubMed PMC
Suomela S, Elomaa O, Skoog T, et al. CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS One 2009;4:e6030. PubMed PMC
Chang J, Zhong R, Tian J, et al. Exome-wide analyses identify low-frequency variant in CYP26B1 and additional coding variants associated with esophageal squamous cell carcinoma. Nat Genet 2018;50:338–343. PubMed
Cunliffe HE, Jiang Y, Fornace KM, et al. PAR6B is required for tight junction formation and activated PKCzeta localization in breast cancer. Am J Cancer Res 2012;2:478–91. PubMed PMC
Shi X, Huo J, Gao X, et al. A newly identified lncRNA H1FX-AS1 targets DACT1 to inhibit cervical cancer via sponging miR-324–3p. Cancer Cell Int 2020;20:358. PubMed PMC
Zhu K, Jiang B, Yang Y, et al. DACT1 overexpression inhibits proliferation, enhances apoptosis, and increases daunorubicin chemosensitivity in KG-1alpha cells. Tumour Biol 2017;39:1010428317711089. PubMed
Song H, Li Y, Lee J, et al. Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 2009;69:879–86. PubMed PMC
Boye K, Pujol N, I DA, et al. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun 2017;8:1571. PubMed PMC
Tian Y, Wang C, Chen S, et al. Extracellular Hsp90alpha and clusterin synergistically promote breast cancer epithelial-to-mesenchymal transition and metastasis via LRP1. J Cell Sci 2019;132. PubMed
Siebring-van Olst E, Blijlevens M, de Menezes RX, et al. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol 2017;11:534–551. PubMed PMC
Hamurcu Z, Delibasi N, Gecene S, et al. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin beta1/Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol 2018;144:415–430. PubMed PMC
Di Simone N, Hall HA, Welt C, et al. Activin regulates betaA-subunit and activin receptor messenger ribonucleic acid and cellular proliferation in activin-responsive testicular tumor cells. Endocrinology 1998;139:1147–55. PubMed
Pacifici R, Civitelli R, Rifas L, et al. Does interleukin-1 affect intracellular calcium in osteoblast-like cells (UMR-106)? J Bone Miner Res 1988;3:107–11. PubMed
Favaro E, Bensaad K, Chong MG, et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 2012;16:751–64. PubMed
Terashima M, Fujita Y, Togashi Y, et al. KIAA1199 interacts with glycogen phosphorylase kinase beta-subunit (PHKB) to promote glycogen breakdown and cancer cell survival. Oncotarget 2014;5:7040–50. PubMed PMC
Cheng Z, Wei W, Wu Z, et al. ARPC2 promotes breast cancer proliferation and metastasis. Oncol Rep 2019;41:3189–3200. PubMed PMC
Yoon YJ, Han YM, Choi J, et al. Benproperine, an ARPC2 inhibitor, suppresses cancer cell migration and tumor metastasis. Biochem Pharmacol 2019;163:46–59. PubMed
Li K, Guo W, Li Z, et al. ALDH2 Repression Promotes Lung Tumor Progression via Accumulated Acetaldehyde and DNA Damage. Neoplasia 2019;21:602–614. PubMed PMC
Seo W, Gao Y, He Y, et al. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J Hepatol 2019;71:1000–1011. PubMed PMC
Rapetti-Mauss R, Bustos V, Thomas W, et al. Bidirectional KCNQ1:beta-catenin interaction drives colorectal cancer cell differentiation. Proc Natl Acad Sci U S A 2017;114:4159–4164. PubMed PMC
Hulur I, Gamazon ER, Skol AD, et al. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci. BMC Genomics 2015;16:138. PubMed PMC