Synergistic Effects of Fructose and Food Preservatives on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): From Gut Microbiome Alterations to Hepatic Gene Expression
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-09732S
Czech Science Foundation
22-12533S
Czech Science Foundation
PubMed
39519554
PubMed Central
PMC11547954
DOI
10.3390/nu16213722
PII: nu16213722
Knihovny.cz E-zdroje
- Klíčová slova
- food additives, fructose, gut microbiome, hepatic gene expression, inflammation, intestinal permeability, mycobiome, non-alcoholic fatty liver disease (NAFLD),
- MeSH
- exprese genu účinky léků MeSH
- fruktosa * škodlivé účinky MeSH
- játra * metabolismus účinky léků MeSH
- kyselina sorbová farmakologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- potravinářské konzervační látky * farmakologie škodlivé účinky MeSH
- střevní mikroflóra * účinky léků MeSH
- synergismus léků MeSH
- ztučnělá játra MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fruktosa * MeSH
- kyselina sorbová MeSH
- potravinářské konzervační látky * MeSH
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem closely linked to dietary habits, particularly high fructose consumption. This study investigates the combined effects of fructose and common food preservatives (sodium benzoate, sodium nitrite, and potassium sorbate) on the development and progression of MASLD. Methods: We utilized a human microbiota-associated mouse model, administering 10% fructose with or without preservatives for 11 weeks. Liver histology, hepatic gene expression (microarray analysis), biochemical markers, cytokine profiles, intestinal permeability, and gut microbiome composition (16S rRNA and Internal Transcribed Spacer (ITS) sequencing) were evaluated. Results: Fructose and potassium sorbate synergistically induced liver pathology characterized by increased steatosis, inflammation and fibrosis. These histological changes were associated with elevated liver function markers and altered lipid profiles. The treatments also induced significant changes in both the bacterial and fungal communities and disrupted intestinal barrier function, leading to increased pro-inflammatory responses in the mesenteric lymph nodes. Liver gene expression analysis revealed a wide range of transcriptional changes induced by fructose and modulated by the preservative. Key genes involved in lipid metabolism, oxidative stress, and inflammatory responses were affected. Conclusions: Our findings highlight the complex interactions between dietary components, gut microbiota, and host metabolism in the development of MASLD. The study identifies potential risks associated with the combined consumption of fructose and preservatives, particularly potassium sorbate. Our data reveal new mechanisms that are involved in the development of MASLD and open up a new avenue for the prevention and treatment of MASLD through dietary interventions and the modulation of the microbiome.
Zobrazit více v PubMed
Eslam M., Sanyal A.J., George J. International Consensus Panel MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158:1999–2014. doi: 10.1053/j.gastro.2019.11.312. PubMed DOI
Younossi Z.M., Golabi P., Paik J.M., Henry A., Van Dongen C., Henry L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology. 2023;77:1335–1347. doi: 10.1097/HEP.0000000000000004. PubMed DOI PMC
Rinella M.E. Nonalcoholic Fatty Liver Disease: A Systematic Review. JAMA. 2015;313:2263–2273. doi: 10.1001/jama.2015.5370. PubMed DOI
Vanni E., Bugianesi E., Kotronen A., De Minicis S., Yki-Järvinen H., Svegliati-Baroni G. From the Metabolic Syndrome to NAFLD or Vice Versa? Dig. Liver Dis. 2010;42:320–330. doi: 10.1016/j.dld.2010.01.016. PubMed DOI
Hrncir T., Hrncirova L., Kverka M., Hromadka R., Machova V., Trckova E., Kostovcikova K., Kralickova P., Krejsek J., Tlaskalova-Hogenova H. Gut Microbiota and NAFLD: Pathogenetic Mechanisms, Microbiota Signatures, and Therapeutic Interventions. Microorganisms. 2021;9:957. doi: 10.3390/microorganisms9050957. PubMed DOI PMC
Betrapally N.S., Gillevet P.M., Bajaj J.S. Gut Microbiome and Liver Disease. Transl. Res. 2017;179:49–59. doi: 10.1016/j.trsl.2016.07.005. PubMed DOI PMC
Shen F., Zheng R.-D., Sun X.-Q., Ding W.-J., Wang X.-Y., Fan J.-G. Gut Microbiota Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease. Hepatobiliary Pancreat. Dis. Int. 2017;16:375–381. doi: 10.1016/S1499-3872(17)60019-5. PubMed DOI
Aron-Wisnewsky J., Vigliotti C., Witjes J., Le P., Holleboom A.G., Verheij J., Nieuwdorp M., Clément K. Gut Microbiota and Human NAFLD: Disentangling Microbial Signatures from Metabolic Disorders. Nat. Rev. Gastroenterol. Hepatol. 2020;17:279–297. doi: 10.1038/s41575-020-0269-9. PubMed DOI
Hrncir T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms. 2022;10:578. doi: 10.3390/microorganisms10030578. PubMed DOI PMC
Zhang H., Lu Y., Zhang Y., Dong J., Jiang S., Tang Y. DHA-Enriched Phosphatidylserine Ameliorates Cyclophosphamide-Induced Liver Injury via Regulating the Gut-Liver Axis. Int. Immunopharmacol. 2024;140:112895. doi: 10.1016/j.intimp.2024.112895. PubMed DOI
Jensen T., Abdelmalek M.F., Sullivan S., Nadeau K.J., Green M., Roncal C., Nakagawa T., Kuwabara M., Sato Y., Kang D.-H., et al. Fructose and Sugar: A Major Mediator of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2018;68:1063–1075. doi: 10.1016/j.jhep.2018.01.019. PubMed DOI PMC
Hrncirova; Machova; Trckova; Krejsek; Hrncir Food Preservatives Induce Proteobacteria Dysbiosis in Human-Microbiota Associated Nod2-Deficient Mice. Microorganisms. 2019;7:383. doi: 10.3390/microorganisms7100383. PubMed DOI PMC
Hrncirova L., Hudcovic T., Sukova E., Machova V., Trckova E., Krejsek J., Hrncir T. Human Gut Microbes Are Susceptible to Antimicrobial Food Additives in Vitro. Folia Microbiol. 2019;64:497–508. doi: 10.1007/s12223-018-00674-z. PubMed DOI
Chassaing B., Koren O., Goodrich J.K., Poole A.C., Srinivasan S., Ley R.E., Gewirtz A.T. Dietary Emulsifiers Impact the Mouse Gut Microbiota Promoting Colitis and Metabolic Syndrome. Nature. 2015;519:92–96. doi: 10.1038/nature14232. PubMed DOI PMC
Lebeaupin C., Proics E., de Bieville C.H.D., Rousseau D., Bonnafous S., Patouraux S., Adam G., Lavallard V.J., Rovere C., Le Thuc O., et al. ER Stress Induces NLRP3 Inflammasome Activation and Hepatocyte Death. Cell Death Dis. 2015;6:e1879. doi: 10.1038/cddis.2015.248. PubMed DOI PMC
Chu H., Duan Y., Yang L., Schnabl B. Small Metabolites, Possible Big Changes: A Microbiota-Centered View of Non-Alcoholic Fatty Liver Disease. Gut. 2019;68:359–370. doi: 10.1136/gutjnl-2018-316307. PubMed DOI
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [(accessed on 5 September 2024)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Katoh K. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Price M.N., Dehal P.S., Arkin A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Lin H., Peddada S.D. Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020;11:3514. doi: 10.1038/s41467-020-17041-7. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2021.
RStudio Team . RStudio: Integrated Development Environment for R. RStudio Team; Boston, MA, USA: 2021.
Wang H., Guo Y., Han W., Liang M., Xiao X., Jiang X., Yu W. Tauroursodeoxycholic Acid Improves Nonalcoholic Fatty Liver Disease by Regulating Gut Microbiota and Bile Acid Metabolism. J. Agric. Food Chem. 2024;72:20194–20210. doi: 10.1021/acs.jafc.4c04630. PubMed DOI
Lang S., Duan Y., Liu J., Torralba M.G., Kuelbs C., Ventura-Cots M., Abraldes J.G., Bosques-Padilla F., Verna E.C., Brown R.S., et al. Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis. Hepatology. 2020;71:522–538. doi: 10.1002/hep.30832. PubMed DOI PMC
Sokol H., Leducq V., Aschard H., Pham H.-P., Jegou S., Landman C., Cohen D., Liguori G., Bourrier A., Nion-Larmurier I., et al. Fungal Microbiota Dysbiosis in IBD. Gut. 2017;66:1039–1048. doi: 10.1136/gutjnl-2015-310746. PubMed DOI PMC
Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., et al. Supplementation with Akkermansia Muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nat. Med. 2019;25:1096–1103. doi: 10.1038/s41591-019-0495-2. PubMed DOI PMC
Demir M., Lang S., Hartmann P., Duan Y., Martin A., Miyamoto Y., Bondareva M., Zhang X., Wang Y., Kasper P., et al. The Fecal Mycobiome in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2022;76:788–799. doi: 10.1016/j.jhep.2021.11.029. PubMed DOI PMC
Fotis D., Liu J., Dalamaga M. Could Gut Mycobiome Play a Role in NAFLD Pathogenesis? Insights and Therapeutic Perspectives. Metab. Open. 2022;14:100178. doi: 10.1016/j.metop.2022.100178. PubMed DOI PMC
Mouries J., Brescia P., Silvestri A., Spadoni I., Sorribas M., Wiest R., Mileti E., Galbiati M., Invernizzi P., Adorini L., et al. Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. J. Hepatol. 2019;71:1216–1228. doi: 10.1016/j.jhep.2019.08.005. PubMed DOI PMC
Tilg H., Adolph T.E., Moschen A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology. 2021;73:833–842. doi: 10.1002/hep.31518. PubMed DOI PMC
Softic S., Stanhope K.L., Boucher J., Divanovic S., Lanaspa M.A., Johnson R.J., Kahn C.R. Fructose and Hepatic Insulin Resistance. Crit. Rev. Clin. Lab. Sci. 2020;57:308–322. doi: 10.1080/10408363.2019.1711360. PubMed DOI PMC
Semmler G., Datz C., Trauner M. Eating, Diet, and Nutrition for the Treatment of Non-Alcoholic Fatty Liver Disease. Clin. Mol. Hepatol. 2022;29:S244–S260. doi: 10.3350/cmh.2022.0364. PubMed DOI PMC
Abdelmalek M.F., Suzuki A., Guy C., Unalp-Arida A., Colvin R., Johnson R.J., Diehl A.M., Nonalcoholic Steatohepatitis Clinical Research Network Increased Fructose Consumption Is Associated with Fibrosis Severity in Patients with Nonalcoholic Fatty Liver Disease. Hepatology. 2010;51:1961–1971. doi: 10.1002/hep.23535. PubMed DOI PMC
Chassaing B., Van De Wiele T., De Bodt J., Marzorati M., Gewirtz A.T. Dietary Emulsifiers Directly Alter Human Microbiota Composition and Gene Expression Ex Vivo Potentiating Intestinal Inflammation. Gut. 2017;66:1414–1427. doi: 10.1136/gutjnl-2016-313099. PubMed DOI PMC