Food Preservatives Induce Proteobacteria Dysbiosis in Human-Microbiota Associated Nod2-Deficient Mice
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
15-09518S
Grantová Agentura České Republiky
17-07332S
Grantová Agentura České Republiky
NV19-03-00179
Ministerstvo Zdravotnictví Ceské Republiky
17-31248A
Ministerstvo Zdravotnictví Ceské Republiky
RVO:61388971
Akademie Věd České Republiky
PRVOUK P37/10
Grantová Agentura, Univerzita Karlova
PubMed
31548508
PubMed Central
PMC6843281
DOI
10.3390/microorganisms7100383
PII: microorganisms7100383
Knihovny.cz E-resources
- Keywords
- Clostridiales, Crohn’s disease, Proteobacteria, antimicrobial food additives, diversity, dysbiosis, gnotobiotic, gut microbiota, human microbiota-associated,
- Publication type
- Journal Article MeSH
The worldwide incidence of many immune-mediated and metabolic diseases, initially affecting only the wealthy Western countries, is increasing rapidly. Many of these diseases are associated with the compositional and functional alterations of gut microbiota, i.e., dysbiosis. The most consistent markers of the dysbiosis are a decrease in microbiota diversity and an expansion of Proteobacteria. The role of food preservatives as potential triggers of gut microbiota dysbiosis has been long overlooked. Using a human microbiota-associated mouse model, we demonstrate that a mixture of common antimicrobial food additives induces dysbiosis characterised by an overgrowth of Proteobacteria phylum and a decrease in the Clostridiales order. Remarkably, human gut microbiota in a Nod2-deficient genetic background is even more susceptible to the induction of Proteobacteria dysbiosis by additives than the microbiota in a wild-type background. To conclude, our data demonstrate that antimicrobial food additives trigger gut microbiota dysbiosis in both wild-type and Nod2-deficient backgrounds and at the exposure levels reached in European populations. Whether this additive-modified gut microbiota plays a significant role in the pathogenesis of immune-mediated and metabolic diseases remains to be elucidated.
See more in PubMed
Mosca A., Leclerc M., Hugot J.P. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem? Front. Microbiol. 2016;7:455. doi: 10.3389/fmicb.2016.00455. PubMed DOI PMC
Walters W.A., Xu Z., Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–4233. doi: 10.1016/j.febslet.2014.09.039. PubMed DOI PMC
Zhou Y., Xu Z.Z., He Y., Yang Y., Liu L., Lin Q., Nie Y., Li M., Zhi F., Liu S., et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems. 2018;3:1063. doi: 10.1128/mSystems.00188-17. PubMed DOI PMC
Frank D.N., St Amand A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA. 2007;104:13780–13785. doi: 10.1073/pnas.0706625104. PubMed DOI PMC
Garrett W.S., Lord G.M., Punit S., Lugo-Villarino G., Mazmanian S.K., Ito S., Glickman J.N., Glimcher L.H. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33–45. doi: 10.1016/j.cell.2007.08.017. PubMed DOI PMC
Shin N.-R., Whon T.W., Bae J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503. doi: 10.1016/j.tibtech.2015.06.011. PubMed DOI
Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017;17:219–232. doi: 10.1038/nri.2017.7. PubMed DOI
Kostic A.D., Gevers D., Siljander H., Vatanen T., Hyotylainen T., Hämäläinen A.-M., Peet A., Tillmann V., Pöhö P., Mattila I., et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260–273. doi: 10.1016/j.chom.2015.01.001. PubMed DOI PMC
Scheperjans F., Aho V., Pereira P.A.B., Koskinen K., Paulin L., Pekkonen E., Haapaniemi E., Kaakkola S., Eerola-Rautio J., Pohja M., et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015;30:350–358. doi: 10.1002/mds.26069. PubMed DOI
Schaubeck M., Clavel T., Calasan J., Lagkouvardos I., Haange S.B., Jehmlich N., Basic M., Dupont A., Hornef M., von Bergen M., et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65:225–237. doi: 10.1136/gutjnl-2015-309333. PubMed DOI PMC
Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027131. doi: 10.1038/nature05414. PubMed DOI
Chassaing B., Van de Wiele T., De Bodt J., Marzorati M., Gewirtz A.T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66:1414–1427. doi: 10.1136/gutjnl-2016-313099. PubMed DOI PMC
Rodriguez-Palacios A., Harding A., Menghini P., Himmelman C., Retuerto M., Nickerson K.P., Lam M., Croniger C.M., McLean M.H., Durum S.K., et al. The artificial sweetener Splenda promotes gut Proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm. Bowel. Dis. 2018;24:1005–1020. doi: 10.1093/ibd/izy060. PubMed DOI PMC
Irwin S.V., Fisher P., Graham E., Malek A., Robidoux A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS ONE. 2017;12:e0186629. doi: 10.1371/journal.pone.0186629. PubMed DOI PMC
You X., Einson J.E., Lopez-Pena C.L., Song M., Xiao H., McClements D.J., Sela D.A. Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. NPJ Sci. Food. 2017;1:8. doi: 10.1038/s41538-017-0006-0. PubMed DOI PMC
Hrncirova L., Hudcovic T., Sukova E., Machova V., Trckova E., Krejsek J., Hrncir T. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiol. 2019:1–12. doi: 10.1007/s12223-018-00674-z. PubMed DOI
Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009;1:6ra14. doi: 10.1126/scitranslmed.3000322. PubMed DOI PMC
Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Huntley J., Fierer N., Owens S.M., Betley J., Fraser L., Bauer M., et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8. PubMed DOI PMC
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C., Al-Ghalith G.A., Alexander H. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 2018;6:e27295v2. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Katoh K., Misawa K., Kuma K.I., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Faith D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992;61:1–10. doi: 10.1016/0006-3207(92)91201-3. DOI
Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., Huttley G.A., Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC
McDonald D., Price M.N., Goodrich J., Nawrocki E.P., DeSantis T.Z., Probst A., Andersen G.L., Knight R., Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139. PubMed DOI PMC
Anderson M.J. Permutational Multivariate Analysis of Variance (PERMANOVA) John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2014.
Petnicki-Ocwieja T., Hrncir T., Liu Y.-J., Biswas A., Hudcovic T., Tlaskalova-Hogenova H., Kobayashi K.S. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA. 2009;106:15813–15818. doi: 10.1073/pnas.0907722106. PubMed DOI PMC