Influence of Molybdenum on the Microstructure, Mechanical Properties and Corrosion Resistance of Ti20Ta20Nb20(ZrHf)20-xMox (Where: x = 0, 5, 10, 15, 20) High Entropy Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Research Excellence Initiative of the University of Silesia in Katowice
University of Silesia in Katowice
PubMed
35009538
PubMed Central
PMC8746432
DOI
10.3390/ma15010393
PII: ma15010393
Knihovny.cz E-zdroje
- Klíčová slova
- corrosion resistance, high entropy alloys, mechanical properties, microstructure analysis, multi-component alloys,
- Publikační typ
- časopisecké články MeSH
The presented work was focused on investigating the influence of the (hafnium and zirconium)/molybdenum ratio on the microstructure and properties of Ti20Ta20Nb20(ZrHf)20-xMox (where: x = 0, 5, 10, 15, 20 at.%) high entropy alloys in an as-cast state. The designed chemical composition was chosen due to possible future biomedical applications. Materials were obtained from elemental powders by vacuum arc melting technique. Phase analysis revealed the presence of dual body-centered cubic phases. X-ray diffraction showed the decrease of lattice parameters of both phases with increasing molybdenum concentration up to 10% of molybdenum and further increase of lattice parameters. The presence of two-phase matrix microstructure and hafnium and zirconium precipitates was proved by scanning and transmission electron microscopy observation. Mechanical property measurements revealed decreased micro- and nanohardness and reduced Young's modulus up to 10% of Mo content, and further increased up to 20% of molybdenum addition. Additionally, corrosion resistance measurements in Ringers' solution confirmed the high biomedical ability of studied alloys due to the presence of stable oxide layers.
Zobrazit více v PubMed
Xia C., Kou S. Calculating the Susceptibility of Carbon Steels to Solidification Cracking During Welding. Metall. Mater. Trans. B. 2021;52:460–469. doi: 10.1007/s11663-020-02021-5. DOI
Afikuzzaman M., Belova I.V., Murch G.E. Novel Interdiffusion Analysis in Multicomponent Alloys—Part 1: Application to Ternary Alloys. Diffus. Found. 2021;29:161–177. doi: 10.4028/www.scientific.net/DF.29.161. DOI
Zhang Y. High-Entropy Materials: A Brief Introduction. Springer; Singapore: 2019. History of High-Entropy Materials; pp. 1–33.
Albrecht R., Zubko M., Gancarczyk K., Szeliga D. High-Resolution Diffraction Imaging of Misorientation in Ni-Based Single Crystal Superalloys. In: Tin S., Hardy M., Clews J., Cormier J., Feng Q., Marcin J., O’Brien C., Suzuki A., editors. Proceedings of the 14th International Symposium on Superalloys—Superalloys 2020; Online. 13–17 September 2020; Cham, Switzerland: Springer International Publishing; 2020. pp. 421–430.
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Yeh J.-W. Overview of High-Entropy Alloys. In: Gao M.C., Yeh J.-W., Liaw P.K., Zhang Y., editors. High-Entropy Alloys: Fundamentals and Applications. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–19.
Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Steurer W. Single-phase high-entropy alloys—A critical update. Mater. Charact. 2020;162:110179. doi: 10.1016/j.matchar.2020.110179. DOI
Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. 11-Structural properties. In: Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P., editors. High-Entropy Alloys. 2nd ed. Elsevier; Cambridge, MA, USA: 2019. pp. 195–232.
Han C., Fang Q., Shi Y., Tor S.B., Chua C.K., Zhou K. Recent Advances on High-Entropy Alloys for 3D Printing. Adv. Mater. 2020;32:1903855. doi: 10.1002/adma.201903855. PubMed DOI
Kuwabara K., Shiratori H., Fujieda T., Yamanaka K., Koizumi Y., Chiba A. Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting. Addit. Manuf. 2018;23:264–271. doi: 10.1016/j.addma.2018.06.006. DOI
Sarswat P.K., Sarkar S., Murali A., Huang W., Tan W., Free M.L. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system. Appl. Surf. Sci. 2019;476:242–258. doi: 10.1016/j.apsusc.2018.12.300. DOI
Zuo T., Yang X., Liaw P.K., Zhang Y. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics. 2015;67:171–176. doi: 10.1016/j.intermet.2015.08.014. DOI
Liu R., Chen H., Zhao K., Qin Y., Jiang B., Zhang T., Sha G., Shi X., Uher C., Zhang W., et al. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials. Adv. Mater. 2017;29:1702712. doi: 10.1002/adma.201702712. PubMed DOI
Sheng W., Yang X., Wang C., Zhang Y. Nano-crystallization of high-entropy amorphous NbTiAlSiWx Ny films prepared by magnetron sputtering. Entropy. 2016;18:226. doi: 10.3390/e18060226. DOI
Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581. PubMed DOI
Kosorukova T.A., Gerstein G., Odnosum V.V., Koval Y.N., Maier H.J., Firstov G.S. Microstructure formation in cast TiZrHfCoNiCu and CoNiCuAlGaIn high entropy shape memory alloys: A comparison. Materials. 2019;12:4227. doi: 10.3390/ma12244227. PubMed DOI PMC
Glowka K., Zubko M., Swiec P., Prusik K., Dercz G., Stróz D. Microstructure analysis of equiatomic multi-component Ni20ti20ta20co20cu20 alloy. Arch. Metall. Mater. 2019;64:785–789. doi: 10.24425/amm.2019.127614. DOI
Glowka K., Zubko M., Swiec P., Prusik K., Dercz G., Matyja E., Stróz D. Microstructure of multi-component Ni35Ti35Ta10Co10Cu10 alloy. Arch. Metall. Mater. 2019;64:715–719. doi: 10.24425/amm.2019.127603. DOI
Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765. doi: 10.1016/j.intermet.2010.05.014. DOI
Xu Z.Q., Ma Z.L., Wang M., Chen Y.W., Tan Y.D., Cheng X.W. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A. 2019;755:318–322. doi: 10.1016/j.msea.2019.03.054. DOI
Cao B., Yang T., Liu W., Liu C.T. Precipitation-hardened high-entropy alloys for high-temperature applications: A critical review. MRS Bull. 2019;44:854–859. doi: 10.1557/mrs.2019.255. DOI
Reclaru L., Ardelean L.C., Grecu A.F., Miu C.A. Multicomponent Alloys for Biomedical Applications. In: Sharma A., Duriagina Z., Kumar S., editors. Engineering Steels and High Entropy-Alloys. IntechOpen; Rijeka, Croatia: 2020.
Biesiekierski A., Wang J., Abdel-Hady Gepreel M., Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–1669. doi: 10.1016/j.actbio.2012.01.018. PubMed DOI
Saini M. Implant biomaterials: A comprehensive review. World J. Clin. Cases. 2015;3:52–57. doi: 10.12998/wjcc.v3.i1.52. PubMed DOI PMC
Krawczyk S., Golba S., Słodek A. The Book of Articles, National Scientific Conference “e-Factory of Science”. 4th ed. Promovendi Foundation Publishing; Lodz, Poland: 2020. Dosing system of n-octylphenothiazine derivative based on PEDOT; pp. 35–45.
Eisenbarth E., Velten D., Müller M., Thull R., Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–5713. doi: 10.1016/j.biomaterials.2004.01.021. PubMed DOI
Dercz G., Matuła I., Maszybrocka J. Properties of Porous Ti–26Nb–6Mo–1.5Sn Alloy Produced via Powder Metallurgy for Biomedical Applications. Phys. Met. Metallogr. 2019;120:1384–1391. doi: 10.1134/S0031918X19130040. DOI
Dercz G., Matuła I., Maszybrocka J., Zubko M., Barczyk J., Pająk L., Stach S. Effect of milling time and presence of Sn on the microstructure and porosity of sintered Ti-10Ta-8Mo and Ti-10Ta-8Mo-3Sn alloys. J. Alloys Compd. 2019;791:232–247. doi: 10.1016/j.jallcom.2019.03.287. DOI
Matuła I., Zubko M., Dercz G. Role of Sn as a process control agent on mechanical alloying behavior of nanocrystalline titanium based powders. Materials. 2020;13:2110. doi: 10.3390/ma13092110. PubMed DOI PMC
Matsuno H., Yokoyama A., Watari F., Uo M., Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253–1262. doi: 10.1016/S0142-9612(00)00275-1. PubMed DOI
Mohammadi S., Esposito M., Cucu M., Ericson L.E., Thomsen P. Tissue response to hafnium. J. Mater. Sci. Mater. Med. 2001;12:603–611. doi: 10.1023/A:1011237610299. PubMed DOI
Rituerto Sin J., Neville A., Emami N. Corrosion and tribocorrosion of hafnium in simulated body fluids. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1157–1164. doi: 10.1002/jbm.b.33097. PubMed DOI
Wang W., Poh C.K. Titanium Alloys in Orthopaedics. In: Sieniawski J., Ziaja W., editors. Titanium Alloys. IntechOpen; Rijeka, Croatia: 2013.
Soundararajan S.R., Vishnu J., Manivasagam G., Muktinutalapati N.R. Processing of Beta Titanium Alloys for Aerospace and Biomedical Applications. In: Motyka M., Ziaja W., Sieniawsk J., editors. Titanium Alloys. IntechOpen; Rijeka, Croatia: 2019.
Li Y.H., Yang C., Wang F., Zhao H.D., Qu S.G., Li X.Q., Zhang W.W., Li Y.Y. Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory. Mater. Des. 2015;85:7–13. doi: 10.1016/j.matdes.2015.06.176. DOI
Popescu G., Ghiban B., Popescu C.A., Rosu L., Truscǎ R., Carcea I., Soare V., Dumitrescu D., Constantin I., Olaru M.T., et al. New TiZrNbTaFe high entropy alloy used for medical applications. IOP Conf. Ser. Mater. Sci. Eng. 2018;400:022049. doi: 10.1088/1757-899X/400/2/022049. DOI
Wang S.P., Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C. 2017;73:80–89. doi: 10.1016/j.msec.2016.12.057. PubMed DOI
Todai M., Nagase T., Hori T., Matsugaki A., Sekita A., Nakano T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017;129:65–68. doi: 10.1016/j.scriptamat.2016.10.028. DOI
Hori T., Nagase T., Todai M., Matsugaki A., Nakano T. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scr. Mater. 2019;172:83–87. doi: 10.1016/j.scriptamat.2019.07.011. DOI
Ishimoto T., Ozasa R., Nakano K., Weinmann M., Schnitter C., Stenzel M., Matsugaki A., Nagase T., Matsuzaka T., Todai M., et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scr. Mater. 2021;194:113658. doi: 10.1016/j.scriptamat.2020.113658. DOI
Shittu J., Pole M., Cockerill I., Sadeghilaridjani M., Reddy L.V.K., Manivasagam G., Singh H., Grewal H.S., Arora H.S., Mukherjee S. Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. ACS Appl. Bio. Mater. 2020;3:8890–8900. doi: 10.1021/acsabm.0c01181. PubMed DOI
Yang W., Liu Y., Pang S., Liaw P.K., Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020;124:106845. doi: 10.1016/j.intermet.2020.106845. DOI
Yuan Y., Wu Y., Yang Z., Liang X., Lei Z., Huang H., Wang H., Liu X., An K., Wu W., et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019;7:225–231. doi: 10.1080/21663831.2019.1584592. DOI
Motallebzadeh A., Peighambardoust N.S., Sheikh S., Murakami H., Guo S., Canadinc D. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics. 2019;113:106572. doi: 10.1016/j.intermet.2019.106572. DOI
Gurel S., Yagci M.B., Bal B., Canadinc D. Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants. Mater. Chem. Phys. 2020;254:123377. doi: 10.1016/j.matchemphys.2020.123377. DOI
Tseng K.K., Juan C.C., Tso S., Chen H.C., Tsai C.W., Yeh J.W. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys. Entropy. 2019;21:15. doi: 10.3390/e21010015. PubMed DOI PMC
Bhandari U., Mullamuri B., Thangaprakash S. First-principles study on structural mechanical and thermodynamic properties of HfMoTaTiZr. J. Phys. Conf. Ser. 2020;1706:012148. doi: 10.1088/1742-6596/1706/1/012148. DOI
Chen S.Y., Tong Y., Tseng K.K., Yeh J.W., Poplawsky J.D., Wen J.G., Gao M.C., Kim G., Chen W., Ren Y., et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr. Mater. 2019;158:50–56. doi: 10.1016/j.scriptamat.2018.08.032. DOI
Juan C.C., Tseng K.K., Hsu W.L., Tsai M.H., Tsai C.W., Lin C.M., Chen S.K., Lin S.J., Yeh J.W. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 2016;175:284–287. doi: 10.1016/j.matlet.2016.03.133. DOI
Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008;10:534–538. doi: 10.1002/adem.200700240. DOI
Nong Z.-S., Zhu J.-C., Cao Y., Yang X.-W., Lai Z.-H., Liu Y. Stability and structure prediction of cubic phase in as cast high entropy alloys. Mater. Sci. Technol. 2014;30:363–369. doi: 10.1179/1743284713Y.0000000368. DOI
Guo S., Ng C., Lu J., Liu C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011;109:103505. doi: 10.1063/1.3587228. DOI
Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021. DOI
Glowka K., Zubko M., Świec P., Prusik K., Albrecht R., Dercz G., Loskot J., Witala B., Stróż D. Microstructure and mechanical properties of Co-Cr-Mo-Si-Y-Zr high entropy alloy. Metals. 2020;10:1456. doi: 10.3390/met10111456. DOI
Guo S., Liu C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X. DOI
Akmal M., Hussain A., Afzal M., Lee Y.I., Ryu H.J. Systematic Study of (MoTa)xNbTiZr Medium- and High-Entropy Alloys for Biomedical Implants- In Vivo Biocompatibility Examination. J. Mater. Sci. Technol. 2021;78:183–191. doi: 10.1016/j.jmst.2020.10.049. DOI
Ni S., Zheng T., Liao X., Song M. Phases in pure hafnium. Philos. Mag. Lett. 2014;94:370–376. doi: 10.1080/09500839.2014.913818. DOI
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Cahn J.W. Critical point wetting. J. Chem. Phys. 1977;66:3667–3672. doi: 10.1063/1.434402. DOI
Straumal B., Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci. 2004;12:147–155. doi: 10.1023/B:INTS.0000028645.30358.f5. DOI
Straumal B.B., Korneva A., Kuzmin A., Lopez G.A., Rabkin E., Straumal A.B., Gerstein G., Gornakova A.S. The grain boundary wetting phenomena in the ti-containing high-entropy alloys: A review. Metals. 2021;11:1881. doi: 10.3390/met11111881. PubMed DOI PMC
Straumal B.B., Korneva A., Lopez G.A., Kuzmin A., Rabkin E., Gerstein G., Straumal A.B., Gornakova A.S. Grain Boundary Wetting by a Second Solid Phase in the High Entropy Alloys: A Review. Materials. 2021;14:7506. doi: 10.3390/ma14247506. PubMed DOI PMC
Schmidt A.M., Azambuja D.S. Corrosion behavior of ti and Ti6Al4V in citrate buffers containing fluoride ions. Mater. Res. 2010;13:45–50. doi: 10.1590/S1516-14392010000100011. DOI
Lasia A. Electrochemical Impedance Spectroscopy and Its Applications. Springer; New York, NY, USA: 2014.
Handzlik P., Fitzner K. Corrosion resistance of Ti and Ti-Pd alloy in phosphate buffered saline solutions with and without H2O2 addition. Trans. Nonferrous Met. Soc. China. 2013;23:866–875. doi: 10.1016/S1003-6326(13)62541-8. DOI
Cai Z., Shafer T., Watanabe I., Nunn M.E., Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24:213–218. doi: 10.1016/S0142-9612(02)00293-4. PubMed DOI
Hryniewicz T., Rokosz K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corros. Methods Mater. 2014;61:57–64. doi: 10.1108/ACMM-03-2013-1249. DOI
Szklarska M., Dercz G., Rak J., Simka W., Losiewicz B. The influence of passivation type on corrosion resistance of Ti15Mo alloy in simulated body fluids. Arch. Metall. Mater. 2015;60:2687–2693. doi: 10.1515/amm-2015-0433. DOI
Szklarska M., Łosiewicz B., Dercz G., Zubko M., Albrecht R., Stróz D. Charac terization of long-term corros ion performance of ti15mo alloy in saline solution. Arch. Metall. Mater. 2019;64:773–778. doi: 10.24425/amm.2019.127612. DOI
Godley R., Starosvetsky D., Gotman I. Corrosion behavior of a low modulus β-Ti-45% Nb. J. Mater. Scince Med. 2006;17:63–67. doi: 10.1007/s10856-006-6330-6. PubMed DOI
Hwang M.J., Choi H.R., Kook M.S., Song H.J., Park Y.J. Investigation of passivation and galvanic corrosion of Ti-Nb alloys and pure titanium. Mater. Corros. 2015;66:783–789. doi: 10.1002/maco.201407784. DOI
Samuel S., Nag S., Nasrazadani S., Ukirde V., El Bouanani M., Mohandas A., Nguyen K., Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J. Biomed. Mater. Res. Part A. 2010;94:1251–1256. doi: 10.1002/jbm.a.32782. PubMed DOI
Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials. 1996;17:2003–2008. doi: 10.1016/0142-9612(95)00352-5. PubMed DOI
Rosalbino F., MacCiò D., Scavino G., Saccone A. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer’s physiological solution. J. Mater. Sci. Mater. Med. 2012;23:865–871. doi: 10.1007/s10856-012-4560-3. PubMed DOI
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Fan Z., Swadener J.G., Rho J.Y., Roy M.E., Pharr G.M. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orthop. Res. 2002;20:806–810. doi: 10.1016/S0736-0266(01)00186-3. PubMed DOI
Zysset P.K., Guo X.E., Hoffler C.E., Moore K.E., Goldstein S.A. Mechanical properties of human trabecular bone lamellae quantified by nanoindentation. Technol. Health Care. 1998;6:429–432. doi: 10.3233/THC-1998-65-615. PubMed DOI
Hryniewicz T., Rokosz K., Valíček J., Rokicki R. Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater. Lett. 2012;83:69–72. doi: 10.1016/j.matlet.2012.06.010. DOI
Ataee A., Li Y., Wen C. A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomater. 2019;97:587–596. doi: 10.1016/j.actbio.2019.08.008. PubMed DOI
Biesiekierski A., Lin J., Munir K., Ozan S., Li Y., Wen C. An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Sci. Rep. 2018;8:5737. doi: 10.1038/s41598-018-24155-y. PubMed DOI PMC
Uddin M.J., Ramirez-Cedillo E., Mirshams R.A., Siller H.R. Nanoindentation and electron backscatter diffraction mapping in laser powder bed fusion of stainless steel 316L. Mater. Charact. 2021;174:111047. doi: 10.1016/j.matchar.2021.111047. DOI
Ruzic J., Emura S., Ji X., Watanabe I. Mo segregation and distribution in Ti–Mo alloy investigated using nanoindentation. Mater. Sci. Eng. A. 2018;718:48–55. doi: 10.1016/j.msea.2018.01.098. DOI
Ehtemam-Haghighi S., Cao G., Zhang L.C. Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. J. Alloys Compd. 2017;692:892–897. doi: 10.1016/j.jallcom.2016.09.123. DOI
Li P., Ma X., Tong T., Wang Y. Microstructural and mechanical properties of β-type Ti–Mo–Nb biomedical alloys with low elastic modulus. J. Alloys Compd. 2020;815:152412. doi: 10.1016/j.jallcom.2019.152412. DOI
Li P., Ma X., Wang D., Zhang H. Microstructural and Mechanical Properties of β-Type Ti–Nb–Sn Biomedical Alloys with Low Elastic Modulus. Metals. 2019;9:712. doi: 10.3390/met9060712. DOI
Wang S.P., Xu J. Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation. J. Mater. Sci. Technol. 2019;35:812–816. doi: 10.1016/j.jmst.2018.11.014. DOI
Nguyen V.T., Qian M., Shi Z., Song T., Huang L., Zou J. A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA) Intermetallics. 2018;101:39–43. doi: 10.1016/j.intermet.2018.07.008. DOI
Zýka J., Málek J., Veselý J., Lukáč F., Čížek J., Kuriplach J., Melikhova O. Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system. Entropy. 2019;21:114. doi: 10.3390/e21020114. PubMed DOI PMC