Aminoguanidine Protects Boar Spermatozoa against the Deleterious Effects of Oxidative Stress

. 2018 Nov 01 ; 10 (4) : . [epub] 20181101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30388840
Odkazy

PubMed 30388840
PubMed Central PMC6321554
DOI 10.3390/pharmaceutics10040212
PII: pharmaceutics10040212
Knihovny.cz E-zdroje

Aminoguanidine is a selective inhibitor of the inducible nitric oxide synthase (iNOS) and a scavenger of reactive oxygen species (ROS). Numerous studies have shown the antioxidant properties of aminoguanidine in several cell lines, but the in vitro effects of this compound on spermatozoa under oxidative stress are unknown. In this study, we tested the hypothesis that aminoguanidine may protect against the detrimental effects of oxidative stress in boar spermatozoa. For this purpose, sperm samples were incubated with a ROS generating system (Fe2+/ascorbate) with or without aminoguanidine supplementation (10, 1, and 0.1 mM). Our results show that aminoguanidine has powerful antioxidant capacity and protects boar spermatozoa against the deleterious effects of oxidative stress. After 2 h and 3.5 h of sperm incubation, the samples treated with aminoguanidine showed a significant increase in sperm velocity, plasma membrane and acrosome integrity together with a reduced lipid peroxidation in comparison with control samples (p < 0.001). Interestingly, except for the levels of malondialdehyde, the samples treated with 1 mM aminoguanidine did not differ or showed better performance than control samples without Fe2+/ascorbate. The results from this study provide new insights into the application of aminoguanidine as an in vitro therapeutic agent against the detrimental effects of oxidative stress in semen samples.

Zobrazit více v PubMed

Betteridge D.J. What is oxidative stress? Metabolism. 2000;49:3–8. doi: 10.1016/S0026-0495(00)80077-3. PubMed DOI

Giulivi C., Poderoso J.J., Boveris A. Production of nitric oxide by mitochondria. J. Biol. Chem. 1998;273:11038–11043. doi: 10.1074/jbc.273.18.11038. PubMed DOI

Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC

Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC

Agarwal A., Saleh R.A. Role of oxidants in male infertility: Rationale, significance, and treatment. Urol. Clin. N. Am. 2002;29:817–827. doi: 10.1016/S0094-0143(02)00081-2. PubMed DOI

Tvrdá E., Kňažická Z., Bárdos L., Massányi P., Lukáč N. Impact of oxidative stress on male fertility—A review. Acta Vet. Hung. 2011;59:465–484. doi: 10.1556/AVet.2011.034. PubMed DOI

Aitken R.J., Gibb Z., Baker M.A., Drevet J., Gharagozloo P. Causes and consequences on oxidative stress in spermatozoa. Reprod. Fertil. Dev. 2016;28:1–10. doi: 10.1071/RD15325. PubMed DOI

Agarwal A., Virk G., Ong C., du Plessis S.S. Effect of oxidative stress on male reproduction. World J. Mens Health. 2014;32:1–17. doi: 10.5534/wjmh.2014.32.1.1. PubMed DOI PMC

Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI

Guthrie H.D., Welch G.R. Effects of reactive oxygen species on sperm function. Theriogenology. 2012;78:1700–1708. doi: 10.1016/j.theriogenology.2012.05.002. PubMed DOI

Knott A.B., Bossy-Wetzel E. Nitric oxide in health and disease of the nervous system. Antioxid. Redox Signal. 2009;11:541–553. doi: 10.1089/ars.2008.2234. PubMed DOI PMC

Salimian Rizi B., Achreja A., Nagrath D. Nitric oxide: The forgotten child of tumor metabolism. Trends Cancer. 2017;3:659–672. doi: 10.1016/j.trecan.2017.07.005. PubMed DOI PMC

García-Ortiz A., Serrador J.M. Nitric oxide signaling in T cell-mediated immunity. Trends Mol. Med. 2018;24:412–427. doi: 10.1016/j.molmed.2018.02.002. PubMed DOI

Helms C.C., Gladwin M.T., Kim-Shapiro D.B. Erythrocytes and vascular function: Oxygen and nitric oxide. Front. Physiol. 2018;9:1–9. doi: 10.3389/fphys.2018.00125. PubMed DOI PMC

Burnett A.L. Nitric oxide regulation of penile erection: Biology and therapeutic implications. J. Androl. 2002;23:S20–S26. doi: 10.1111/j.1939-4640.2002.tb02292.x. PubMed DOI

Herrero M., Lamirande E., Gagnon C. Nitric oxide is a signaling molecule in spermatozoa. Curr. Pharm. Des. 2003;9:419–425. doi: 10.2174/1381612033391720. PubMed DOI

Zweier J.L., Samouilov A., Kuppusamy P. Non-enzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta. 1999;1411:250–262. doi: 10.1016/S0005-2728(99)00018-3. PubMed DOI

Dixit V.D., Parvizi N. Nitric oxide and the control of reproduction. Anim. Reprod. Sci. 2001;65:1–16. doi: 10.1016/S0378-4320(00)00224-4. PubMed DOI

Herrero M.B., Pérez Martínez S., Viggiano J.M., Polak J.M., de Gimeno M.F. Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod. Fertil. Dev. 1996;8:931–934. doi: 10.1071/RD9960931. PubMed DOI

Herrero M.B., Goin J.C., Boquet M., Canteros M.G., Franchi A.M., Perez Martinez S., Polak J.M., Viggiano J.M., Gimeno M.A. The nitric oxide synthase of mouse spermatozoa. FEBS Lett. 1997;411:39–42. doi: 10.1016/S0014-5793(97)00570-X. PubMed DOI

Aquila S., Giordano F., Guido C., Rago V., Carpino A. Nitric oxide involvement in the acrosome reaction triggered by leptin in pig sperm. Reprod. Biol. Endocrinol. 2011;9:133. doi: 10.1186/1477-7827-9-133. PubMed DOI PMC

Kessopoulou E., Tomlinson M.J., Barratt C.L., Bolton A.E., Cooke I.D. Origin of reactive oxygen species in human semen: Spermatozoa or leucocytes? J. Reprod. Fertil. 1992;94:963–970. doi: 10.1530/jrf.0.0940463. PubMed DOI

Gomez E., Buckingham D.W., Brindle J., Lanzafame F., Irvine D.S., Aitken R.J. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: Correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J. Androl. 1996;17:276–287. PubMed

Misko T.P., Moore W.M., Kasten T.P., Nickols G.A., Corbett J.A., Tilton R.G., McDaniel M.L., Williamson J.R., Currie M.G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol. 1993;233:119–125. doi: 10.1016/0014-2999(93)90357-N. PubMed DOI

Yildiz G., Demiryurek A.T., Sahin-Erdemli I., Kanzik I. Comparison of antioxidant activities of aminoguanidine, methylguanidine and guanidine by lumino-enhanced chemiluminescence. Br. J. Pharmacol. 1998;124:905–910. doi: 10.1038/sj.bjp.0701924. PubMed DOI PMC

Borg D.J., Forbes J.M. Targeting advanced glycation with pharmaceutical agents: Where are we now? Glycoconj. J. 2016;33:653–670. doi: 10.1007/s10719-016-9691-1. PubMed DOI

Gugliucci A., Menini T. The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: A new role for old molecules? Life Sci. 2003;72:2603–2616. doi: 10.1016/S0024-3205(03)00166-8. PubMed DOI

Jovičić M., Pintus E., Fenclová T., Šimonik O., Chmelíková E., Ros-Santaella J.L., Sedmíková M. Effect of nitric oxide on boar sperm motility, membrane integrity, and acrosomal status during semen storage. Pol. J. Vet. Sci. 2018;21:73–82. doi: 10.24425/119024. PubMed DOI

Oguz F., Ciftci O., Aydın M., Timurkaan N., Beytur A., Altıntas R., Parlakpinar H. Aminoguanidine prevents testicular damage-induced-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in male rats. Andrologia. 2013;45:225–231. doi: 10.1111/j.1439-0272.2012.01334.x. PubMed DOI

Abbasi M., Alizadeh R., Abolhassani F., Amidi F., Hassanzadeh G., Ejtemaei Mehr S., Dehpour A.R. Aminoguanidine improves epididymal sperm parameters in varicocelized rats. Urol. Int. 2011;86:302–306. doi: 10.1159/000322154. PubMed DOI

Abbasi M., Alizadeh R., Abolhassani F., Amidi F., Ragerdi K.I., Fazelipour S., Hoshino Y., Sato E., Dehpour A.R. Effect of aminoguanidine in sperm DNA fragmentation in varicocelized rats: Role of nitric oxide. Reprod. Sci. 2011;18:545–550. doi: 10.1177/1933719110393028. PubMed DOI

Alizadeh N., Abbasi M., Abolhassani F., Amidi F., Mahmoudi R., Hoshino Y., Sato E., Ragerdikashani I. Effects of aminoguanidine on infertile varicocelized rats: A functional and morphological study. Daru J. Fac. Pharm. 2010;18:51–56. PubMed PMC

Alizadeh R., Navid S., Abbasi N., Yari A., Mazaheri Z., Daneshi E., Agarwal A., Abbasi M. The effect of aminoguanidine on sperm motility and mitochondrial membrane potential in varicocelized rats. Iran. J. Basic Med. Sci. 2016;19:1279–1284. doi: 10.22038/ijbms.2016.7908. PubMed DOI PMC

Buettner G.R., Jurkiewicz B.A. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 1996;145:532–541. doi: 10.2307/3579271. PubMed DOI

Brzezińska-Ślebodzińska E., Ślebodziński A.B., Pietras B., Wieczorek G. Antioxidant effect of vitamin E and glutathione on lipid peroxidation in boar semen plasma. Biol. Trace Elem. Res. 1995;47:69–74. doi: 10.1007/BF02790102. PubMed DOI

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015. PubMed DOI

Domínguez-Rebolledo Á.E., Martínez-Pastor F., Fernández-Santos M.R., Del Olmo E., Bisbal A., Ros-Santaella J.L., Garde J.J. Comparison of the TBARS assay and BODIPY C11 probes for assessing lipid peroxidation in red deer spermatozoa. Reprod. Domest. Anim. 2010;45:e360–e368. doi: 10.1111/j.1439-0531.2009.01578.x. PubMed DOI

Harrison R.A.P., Vickers S.E. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J. Reprod. Fertil. 1990;88:343–352. doi: 10.1530/jrf.0.0880343. PubMed DOI

Grieblová A., Pintus E., Ros-Santaella J.L. Integrity of head and tail plasmalemma is associated with different kinetic variables in boar sperm. Anim. Reprod. Sci. 2017;184:218–227. doi: 10.1016/j.anireprosci.2017.07.020. PubMed DOI

Jeyendran R.S., Van der Ven H.H., Perez-Pelaez M., Crabo B.G., Zaneveld L.J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 1984;70:219–228. doi: 10.1530/jrf.0.0700219. PubMed DOI

Pursel V.G., Johnson L.A., Rampacek G.B. Acrosome morphology of boar spermatozoa incubated before cold shock. J. Anim. Sci. 1972;34:278–283. doi: 10.2527/jas1972.342278x. PubMed DOI

García-Vázquez F.A., Hernández-Caravaca I., Yánez-Quintana W., Matás C., Soriano-Úbeda C., Izquierdo-Rico M.J. Morphometry of boar sperm head and flagellum in semen backflow after insemination. Theriogenology. 2015;84:566–574. doi: 10.1016/j.theriogenology.2015.04.011. PubMed DOI

Balercia G., Moretti S., Vignini A., Magagnini M., Mantero F., Boscaro M., Ricciardo-Lamonica G., Mazzanti L. Role of nitric oxide concentrations on human sperm motility. J. Androl. 2004;25:245–249. doi: 10.1002/j.1939-4640.2004.tb02784.x. PubMed DOI

Eroglu C., Yildiz O.G., Saraymen R., Soyuer S., Kilic E., Ozcan S. Aminoguanidine ameliorates radiation-induced oxidative lung damage in rats. Clin. Investig. Med. 2008;31:182–188. doi: 10.25011/cim.v31i4.4778. PubMed DOI

Abraham P., Rabi S., Selvakumar D. Protective effect of aminoguanidine against oxidative stress and bladder injury in cyclophosphamide-induced hemorrhagic cystitis in rat. Cell Biochem. Funct. 2009;27:56–62. doi: 10.1002/cbf.1534. PubMed DOI

Abo-Salem O.M. The protective effect of aminoguanidine on doxorubicin-induced nephropathy in rats. J. Biochem. Mol. Toxicol. 2012;26:1–9. doi: 10.1002/jbt.20422. PubMed DOI

Guthrie H.D., Welch G.R. Use of fluorescence-activated flow cytometry to determine membrane lipid peroxidation during hypothermic liquid storage and freeze-thawing of viable boar sperm loaded with 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza- s-indacene-3-undecanoic acid. J. Anim. Sci. 2007;85:1402–1411. doi: 10.2527/jas.2006-787. PubMed DOI

Zakošek Pipan M., Mrkun J., Kosec M., Nemec Svete A., Zrimšek P. Superoxide dismutase: A predicting factor for boar semen characteristics for short-term preservation. Biomed Res. Int. 2014:105280. doi: 10.1155/2014/105280. PubMed DOI PMC

Barranco I., Tvarijonaviciute A., Perez-Patinõ C., Parrilla I., Ceron J.J., Martinez E.A., Rodriguez-Martinez H., Roca J. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci. Rep. 2015;5:1–9. doi: 10.1038/srep18538. PubMed DOI PMC

Khatun A., Rahman M.S., Pang M.G. Clinical assessment of the male fertility. Obstet. Gynecol. Sci. 2018;61:179–191. doi: 10.5468/ogs.2018.61.2.179. PubMed DOI PMC

Kastelic J.P., Thundathil J.C. Breeding soundness evaluation and semen analysis for predicting bull fertility. Reprod. Domest. Anim. 2008;43:368–373. doi: 10.1111/j.1439-0531.2008.01186.x. PubMed DOI

Jung M., Rüdiger K., Schulze M. In vitro measures for assessing boar semen fertility. Reprod. Domest. Anim. 2015;50:20–24. doi: 10.1111/rda.12533. PubMed DOI

Love C.C. Modern techniques for semen evaluation. Vet. Clin. North Am. Equine Pract. 2016;32:531–546. doi: 10.1016/j.cveq.2016.07.006. PubMed DOI

Druart X., Gatti J.L., Huet S., Dacheux J.L., Humblot P. Hypotonic resistance of boar spermatozoa: Sperm subpopulations and relationship with epididymal maturation and fertility. Reproduction. 2009;137:205–213. doi: 10.1530/REP-08-0225. PubMed DOI

Yeste M. Boar spermatozoa within the oviductal environment (II): Sperm capacitation. In: Bonet S., Casas I., Holt W.V., Yeste M., editors. Boar Reproduction: Fundamentals and New Biotechnological Trends. Springer; Heidelberg, Germany: 2013. pp. 347–405.

Funahashi H. Polyspermic penetration in porcine IVM-IVF systems. Reprod. Fertil. Dev. 2003;15:167–177. doi: 10.1071/RD02076. PubMed DOI

Awda B.J., Mackenzie-Bell M., Buhr M.M. Reactive oxygen species and boar sperm function. Biol. Reprod. 2009;81:553–561. doi: 10.1095/biolreprod.109.076471. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...